Skip to main content
Log in

Chrome Spinels in Carbonate Veins of the Onguren Complex, Western Baikal Region

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Chrome spinels in carbonate veins of the Onguren Complex, East Siberia, Western Baikal region are predominantly ferrichromite and chrommagnetite (MgO ≤ 0.3 wt %, Mg# ≤ 0.04, Al2O3 ≤ 2.5 wt %; Cr# 0.91–1.00, Fe2+/Fe3+ 0.8–1.4) with a high ZnO content (0.9–4.6 wt %). In the calcite vein, titanian chrome-magnetite is transformed into Cr-bearing titanomagnetite, which decomposes into Ti-depleted magnetite and ilmenite at temperature of 970–1000°С and \({{f}_{{{{{\text{O}}}_{{\text{2}}}}}}}\) approximately of +0.5…+0.7 QFM. In the dolomite vein, ferrichromite and chrome-magnetite grains contain relict cores of subferrialumochromite (Al2O3 10.6–14.4 wt %, Cr# 0.63–0.73, Fe2+/Fe3+ 4.1–5.2, MgO ≤ 0.52 wt %) with elevated ZnO (3.7–5.1 wt %), TiO2 (3.2–4.1 wt %), and MnO (0.6–1.1 wt %). Ferrichromite and chrome-magnetite are formed during the high-temperature (>600°C) metamorphism of the vein. Superimposed deformations under greenschist facies conditions lead to the formation of magnetite rims around chrome-magnetite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Arai, S. and Ishimaru, S., Zincian chromite inclusions in diamonds: possibility of deep recycling origin, J. Mineral. Petrol. Sci., 2011, vol. 106, pp. 85–90.

    Article  Google Scholar 

  2. Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, K., and Ishimary, S., Chemical characteristics of chromian spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting, Island Arc, 2011, vol. 20, pp. 125–137.

    Article  Google Scholar 

  3. Arima, M. and Edgar, A.D., Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin, Contrib. Mineral. Petrol., 1981, vol. 77, pp. 288–295.

    Article  Google Scholar 

  4. Barnes, S.J. and Roeder, P.L., The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol., 2001, vol. 42, no. 12, pp. 2279–2302.

    Article  Google Scholar 

  5. Buddington, A.F. and Lindsley, D.H., Iron-titanium oxide minerals and synthetic equivalents. J. Petrol., 1964, vol. 5, no. 2, pp. 310–357.

    Article  Google Scholar 

  6. Chakhmouradian, A.R., Bohm, C.O., Demeny, A., Reguir, E.P., Hegner, E., Creaser, R.A., Halden, N.M., and Yang, P., “Kimberlite” from Wekusko Lake, Manitoba: Actually a diamond-indicator-bearing dolomite carbonatite, Lithos, 2009, vol. 112S, pp. 347–357.

    Article  Google Scholar 

  7. Donskaya, T.V., Bibikova, E.V., Mazukabzov, A.M., Kozakov, I.K., Gladkochub, D.P., Kirnozova, T.I., Plotkina, Yu.V., and Reznitsky, L.Z., Primorsky complex of granitoids of the Western Baikal Region: geochronology, geodynamic typification, Russ. Geol. Geophys., 2003, vol. 44, no. 10, pp. 1006–1016.

    Google Scholar 

  8. Doroshkevich, A.G., Wall, F., and Ripp, G.S., Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral. Petrol, 2007, vol. 90, pp. 19–49.

    Article  Google Scholar 

  9. Droop, G.T.R., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 1987, vol. 51, no. 3, pp. 431–435.

    Article  Google Scholar 

  10. Epstein, E.M., Geologo-petrologicheskaya model i geneicheskie osobennosti rudonosnykh karbonatitovykh kompleksov (Geological and Petrological Model and Genetic Features of Ore-Bearing Carbonatite Complexes), Moscow: Nedra, 1994.

  11. Fanlo, I., Gervilla, F., Colas, V., and Subias, I., Zn-, Mn- and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): constraints on their relationship with the mineralizing process, Ore Geol. Rev., 2015, vol. 71, pp. 82–98.

    Article  Google Scholar 

  12. Gaspar, J.C. and Wyllie, P.J., Magnetite in the carbonatites from the Jacupiranga Complex, Brazil, Am. Mineral., 1983, vol. 68, pp. 195–213.

    Google Scholar 

  13. Ghiorso, M.S. and Sack, R.O., Fe–Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas, Contrib. Mineral. Petrol., 1991, vol. 108, pp. 485–510.

    Article  Google Scholar 

  14. Gladkochub, D.P., Donskaya, T.V., Ernst, R., Mazukabzov, A.M., Sklyarov, E.V., Pisarevsky, S.A., Wingate, M., and Soderlund, U., Proterozoic basic magmatism of the Siberian Craton: main stages and their geodynamic interpretation, Geotectonics, 2012, vol. 46, no. 4, pp. 273–284.

    Article  Google Scholar 

  15. Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineral., 2005, vol. 90, pp. 316–328.

    Article  Google Scholar 

  16. Johan, Z. and Ohnenstetter, D., Zincochromite from the Guaniamo river diamondiferous placers, Venezuela: evidence of its metasomatic origin, Can. Mineral., 2010, vol. 48, pp. 501–514.

    Article  Google Scholar 

  17. Kamenetsky, V.S., Crawford, A.J., and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, J. Petrol., 2001, vol. 42, no. 4, pp. 655–671.

    Article  Google Scholar 

  18. Kapustin, Yu.L., Mineralogiya karbonatitov (Mineralogy of Carbonatites), Leningrad: Nauka, 1971.

  19. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Ilinsky, G.A., Sergeev, A.S., and Abakumova, N.B., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (geoogiya, petrologiya, mineralogiya i geokhimoiya) (The Caledonian Complex of Ultrabasic, Alkaline Rocks and Carbonatites of Kola Peninsula and North Karelia (Geology, Petrology, Mineralogy, and Geochemistry), Moscow: Nedra, 1965.

  20. Lee, M.J., Lee, J.I., and Moutte, J., Compositional variation of Fe–Ti oxides from the Sokli complex, northeastern Finland, Geosci. J., 2005, vol. 9, no. 1, pp. 1–13.

    Article  Google Scholar 

  21. Meyer, H.O.A. and Boyd, F.R., Composition and origin of crystalline inclusions in natural diamonds, Geochim. Cosmochim. Acta, 1972, vol. 36, pp. 1255–1273.

    Article  Google Scholar 

  22. Nasir, S., Al-Khirbash, S., Rollinson, H., Al-Harthy, A., Al-Sayigh, A., Al-Lazki, A., Theye, T., Massonne, H.-J., and Belousova, E., Petrogenesis of early cretaceous carbonatite and ultramafic lamprophyres in a diatreme in the Batain Nappes, Eastern Oman continental margin. Contrib. Mineral. Petrol., 2011, vol. 161, pp. 47–74.

    Article  Google Scholar 

  23. Pavlov, N.V., The chemical composition of chrome-spinel in connection with the petrographic composition of rocks in ultrabasic intrusions, Tr. Inst. Geol., Ser. Rud. Mestorozhd., 1949, vol. 103, no. 3, pp. 3–88.

    Google Scholar 

  24. Pozharitskaya, L.K. and Samoilov, V.S., Petrologiya, mineralogiya i geokhimiya karbonatitov Vostochnoi Sibiri (Petrology, Mineralogy, and Geochemistry of Carbonatites of Eastern Siberia) Moscow: Nauka, 1972.

  25. Ripp, G.S., Doroshkevich, A.G., Badmatsyrenov, M.V., and Karmanov, N.S., Mantle (?) xenoliths in the carbonatites of Northern Transbaikalia, Geochem. Int., 2007, vol. 45, no. 6, pp. 538–545.

    Article  Google Scholar 

  26. Savelyeva, V.B., Bazarova, E.P., and Danilov, B.S., New finds of carbonatite-like rocks in the Western Baikal Region, Dokl. Earth Sci., 2014, vol. 459, no. 2, pp. 1483–1487.

    Article  Google Scholar 

  27. Savelyeva, V.B., Demonterova, E.I., Danilova, Yu.V., Bazarova, E.P., Ivanov, A.V., and Kamenetsky, V.S., New carbonatite complex in the Western Baikal Region, Southern Siberian Craton: Mineralogy, Age, Geochemistry, and Petrogenesis, Petrology, 2016, vol. 24, no. 3, pp. 271–302.

    Article  Google Scholar 

  28. Silaev, V.I., Shabalin, V.N., Golubeva, I.I., Khazov, A.F., and Belousova, E.A., About zinc-containing and zinc-rich chromospinelides of the Timan–Ural region. Herald IG Komi Sci. Center UB, 2008, no. 8, pp. 6–16.

  29. Smith, C.B., Haggerty, S.E., Chatterjee, B., Beard, A., and Townend, R., Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion, Lithos, 2013, vol. 182–183, pp. 102–113.

    Article  Google Scholar 

  30. Stoppa, F. and Woolley, A.R., The Italian carbonatites: field occurrence, petrology and regional significance, Mineral. Petrol., 1997, vol. 59, pp. 43–67.

    Article  Google Scholar 

  31. Evolyutsiya yuzhnoi chasti Sibirskogo kratona v dokembrii (The Evolution of the Southern part of the Siberian Craton in Precambrian), Sklyarov, E. V., Eds., Novosibirsk: Sibirsk. Otd. RAS, 2006.

    Google Scholar 

  32. Carbonatites, Tuttle, J. and Gittins, J., Eds., New York: Interscience Publishers, 1966.

    Google Scholar 

  33. Ustinov, V.I. and Rybakov, V.G., On the Lower Proterozoic stratigraphy of the central part of Western Baikal area, In: Stratigrafiya dokembriya regiona Srednei Sibiri (Precambrian Stratigraphy of the Central Siberian Region), Leningrad: Nauka, 1983, pp. 60–65 (in Russian).

  34. Wooley, A.R. and Church, A.A., Extrusive carbonatites: A brief review, Lithos, 2005, vol. 85, pp. 1–14.

    Article  Google Scholar 

  35. Woolley, A.R. and Kempe, D.R.C., Carbonatites: nomenclature, average chemical compositions, and element distribution, In: Carbonatites: Genesis and Evolution, Bell, K., Eds., London: Unwin Hyman, 1989, pp. 1–14.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewer, whose critical comments substantially improved the manuscript.

Funding

This study has been supported by the Russian Foundation for Basic Researches (project no. 17-05-00819) and Russian Science Foundation (project no. 18-17-00101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Savelyeva or E. A. Khromova.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, V.B., Bazarova, E.P. & Khromova, E.A. Chrome Spinels in Carbonate Veins of the Onguren Complex, Western Baikal Region. Geol. Ore Deposits 62, 652–668 (2020). https://doi.org/10.1134/S1075701520070107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520070107

Keywords:

Navigation