Skip to main content
Log in

Enhanced Hydrophobicity of Nanofibrillated Cellulose Through Surface Modification Using Cetyltrimethylammonium Chloride Derived from Palmityl Alcohol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aims to provide an approach for increasing the hydrophobicity of nanofibrillated cellulose in oil palm empty fruit bunches (NFC-OPEFBs) through surface modification using a sustainable cationic surfactant, i.e., cetyltrimethylammonium chloride derived from palmityl alcohol (CTAC-PA). The NFC-OPEFB was prepared by sulfuric acid treatment. The hydrophobicity of NFC-OPEFB was increased following modification using CTAC-PA, indicated by an increase in the water contact angle value. The dispersibility of the modified NFC-OPEFB (modNFC) in chloroform solution was more stable than that of unmodified NFC-OPEFB (unmodNFC) as observed via ultraviolet–visible spectrophotometry and based on visual appearance. Observation through transmission electron microscopy confirmed that modNFC was completely dispersed in chloroform but undispersed in water. Furthermore, Fourier-transform infrared (FTIR) spectroscopy analysis revealed that the functional groups of NFC-OPEFB were successfully modified using CTAC-PA, justifying the increase in their hydrophobicity characteristics. Peaks were observed at 2892 and 2921 cm−1 for symmetrical and asymmetrical CH2 from the long alkyl chain of CTAC, at 1480 cm−1 for the trimethyl groups of the quaternary ammonium, and at approximately 805 cm−1 for the C–Cl bond on the FTIR spectra of modNFC which were absent from the FTIR spectra of the unmodNFC. This work provides an eco-friendly way to enhance the hydrophobicity characteristics of NFC-OPEFB and expand the use of NFC-OPEFB in hydrophobic polymer matrices, such as poly (lactic acid), polyethylene, etc.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NFC:

Nanofibrillated cellulose

OPEFB:

Oil palm empty fruit bunch

CPC-OPEFB:

Chemically purified cellulose of oil palm empty fruit bunch

CTAC-PA:

Cetyltrimethylammonium chloride derived from palmityl alcohol

FTIR:

Fourier transform infrared

NCC:

Nanocrystalline cellulose

PVA:

Poly (vinyl alcohol)

PLA:

Poly (lactic acid)

PE:

Polyethylene

PP:

Polypropylene

CTAB:

Cetyltrimethylammonium bromide

DDDAB:

Didodecylammonium bromide

DHDAB:

Dihexadecylammonium bromide

References

  1. Haafiz, M.K.M., Hassan, A., Zakaria, Z., Inuwa, I.M.: Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 103, 119–125 (2014)

    Article  Google Scholar 

  2. Haafiz, M.K.M., Eichhorn, S.J., Hassan, A., Jawaid, M.: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 93, 628–634 (2013)

    Article  Google Scholar 

  3. Fareezal, A., Izzati, M., Shazana, M., Ibrahim, R., Rosazley, R., Mohamed, A.Z.: Characterization of nanofibrillated cellulose produced from oil palm empty fruit bunch fibers (OPEFB) using ultrasound. J. Contemp. Issues Thought 6, 30–37 (2016)

    Google Scholar 

  4. Supian, M.A.F., Amin, K.N.M., Jamari, S.S., Mohamad, S.: Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method. J. Environ. Chem. Eng. 8, 103024 (2019)

    Article  Google Scholar 

  5. Fatah, I., Khalil, H.P.S., Hossain, M., Astimar, A.A., Davoudpour, Y., Dungani, R., Bhat, A.H.: Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6, 2611–2624 (2014)

    Article  Google Scholar 

  6. Fahma, F., Iwamoto, S., Hori, N., Iwata, T., Takemura, A.: Isolation, preparation, and characterization of nanofibers from oil palm empty fruit bunch (OPEFB). Cellulose 17, 977–985 (2010)

    Article  Google Scholar 

  7. Hastati, D.Y., Hambali, E., Syamsu, K., Warsiki, E.: Preparation and characterization of nanocelluloses from oil palm empty fruit bunch cellulose. J. Jpn. Inst. Energy 98, 194–201 (2019)

    Article  Google Scholar 

  8. Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Nanostructural, chemical, and thermal changes of oil palm empty fruit bunch cellulose nanofibers pretreated with different solvent extractions. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0098-4

    Article  Google Scholar 

  9. Lani, N.S., Ngadi, N., Johari, A., Jusoh, M.: Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J. Nanomater. (2014). https://doi.org/10.1155/2014/702538

    Article  Google Scholar 

  10. Shankar, S., Rhim, J.W.: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 135, 18–26 (2016)

    Article  Google Scholar 

  11. Salehudin, M.H., Salleh, E., Mamat, S.N.H., Muhamad, I.I.: Starch-based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Proced. Chem. 9, 23–33 (2014)

    Article  Google Scholar 

  12. Habibi, Y.: Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014)

    Article  Google Scholar 

  13. Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010)

    Article  Google Scholar 

  14. Ho, T.T.T., Zimmermann, T., Hauert, R., Caseri, W.: Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18, 139–406 (2011)

    Article  Google Scholar 

  15. Syverud, K., Xhanari, K., Chinga-Carrasco, G., Yu, Y., Stenius, P.: Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J. Nanopart. Res. 13, 773–782 (2011)

    Article  Google Scholar 

  16. Xhanari, K., Syverud, K., Chinga-Carrasco, G., Paso, K., Stenius, P.: Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18, 257–270 (2011)

    Article  Google Scholar 

  17. Kalia, S., Boufi, S., Celli, A., Kango, S.: Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292, 5–31 (2014)

    Article  Google Scholar 

  18. Robles, E., Urruzola, I., Labidi, J., Serrano, L.: Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind. Crops Prod. 71, 44–53 (2015)

    Article  Google Scholar 

  19. Lonnberg, H., Larsson, K., Lindstrom, T., Hult, A., Malmstrom, E.: Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 3, 1426–1433 (2011)

    Article  Google Scholar 

  20. Lu, J., Drzal, L.T.: Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym. Sci. Polym. Phys. 48, 153–161 (2010)

    Article  Google Scholar 

  21. Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z.B., Oksman, K.: Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17, 299–307 (2010)

    Article  Google Scholar 

  22. Missoum, K., Belgacem, M.N., Bras, J.: Nanofibrillated cellulose surface modification: a review. Materials 6, 1745–1766 (2013)

    Article  Google Scholar 

  23. Hasani, M., Cranston, E.D., Westman, G., Gray, D.G.: Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4, 2238–2244 (2008)

    Article  Google Scholar 

  24. Qu, J., Yuan, Z., Wang, C., Wang, A., Liu, X., Wei, B., Wen, Y.: Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N, N dimethylformamide by modification with cethyltrimethylammonium bromide. Cellulose (2019). https://doi.org/10.1007/s10570-019-02655-y

    Article  Google Scholar 

  25. Aulin, C., Shchukarev, A., Lindqvist, J., Malmström, E., Wågberg, L., Lindström, T.: Wetting kinetics of oil mixture on fluorinated model cellulose surfaces. J. Colloid Interface Sci. 317, 556–567 (2008)

    Article  Google Scholar 

  26. Kamel, S.: Nanotechnology and its applications in lignocellulosic composites: a mini-review. Express Polym. Lett. 1, 546–575 (2007)

    Article  Google Scholar 

  27. Goursaud, F., Berchel, M., Guilbot, J., Legros, N., Lemiègre, L., Marcilloux, J., Plusquellec, D., Benvegnu, T.: Glycine betaine as a renewable raw material to “greener” new cationic surfactants. Green Chem. 10(3), 310–320 (2008)

    Article  Google Scholar 

  28. Tardy, B.L., Yokota, S., Ago, M., Xiang, W., Kondo, T., Bordes, R., Rojas, O.J.: Nanocellulose-surfactant interactions. Curr. Opin. Colloid Interface Sci. 29, 57–67 (2017)

    Article  Google Scholar 

  29. Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y., Wang, L.: Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydr. Polym. 136, 485–492 (2016)

    Article  Google Scholar 

  30. Alila, S., Aloulou, F., Beneventi, D., Boufi, S.: Self-aggregation of cationic surfactants onto oxidized cellulose fibers and coadsorption of organic compounds. Langmuir 23, 3723–3731 (2007)

    Article  Google Scholar 

  31. Salajkova, M., Berglund, L.A., Zhou, Q.: Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem. 22, 19798–19805 (2012)

    Article  Google Scholar 

  32. Goh, K.Y., Ching, Y.C., Chuah, C.H., Abdullah, L.C., Liou, N.S.: Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23, 379–390 (2016)

    Article  Google Scholar 

  33. Sari, A.M., Suryani, A., Lotulung, P.D., Tursiloadi, S.: Preparation of alkyl halides as an intermediate compound in synthesis cationic surfactant alkyl trimethyl ammonium chloride. J. Kim. Terap. Indones. 19, 25–28 (2017)

    Article  Google Scholar 

  34. Yunira, E.N., Suryani, A., Dadang, Tursiloadi, S.: Synthesis and application CTAC surfactant from palmityl alcohol in insecticide emulsifiable concentrate formulation. IOP Publ. Earth Environ. Sci. (2018). https://doi.org/10.1088/1755-1315/209/1/012039

    Article  Google Scholar 

  35. Oh, S.Y., Dong, I.Y., Shin, Y., Hwan, C.K., Hak, Y.K., Yong, S.C., Won, H.P., Ji, H.Y.: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340, 2376–2391 (2005)

    Article  Google Scholar 

  36. Alila, S., Boufi, S., Belgacem, M.N., Beneventi, D.: Adsorption of cationic surfactant onto cellulosic fibers I. surface charge effects. Langmuir 21, 8106–8113 (2005)

    Article  Google Scholar 

  37. Penfold, J., Tucker, I., Petkov, J., Thomas, R.K.: Surfactant adsorption onto cellulose surfaces. Langmuir 23, 8357–8364 (2007)

    Article  Google Scholar 

  38. Dhar, N., Au, D., Berry, R.C., Tam, K.C.: Interactions of nanocrystalline cellulose with an oppositely charged surfactant in an aqueous medium. Colloids Surf. A. 415, 310–319 (2012)

    Article  Google Scholar 

  39. Abitbol, T., Marway, H., Cranston, E.D.: Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord. Pulp Pap. Res. J. 29, 46–57 (2014)

    Article  Google Scholar 

  40. Moulik, S.P., Haque, M.E., Jana, P.K., Das, A.R.: Micellar properties of cationic surfactants in pure and mixed states. J. Phys. Chem. 100, 701–708 (1996)

    Article  Google Scholar 

  41. Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of Instrumental Analysis, Chapter 14. Thomson Higher Education, Belmont (1998)

    Google Scholar 

  42. Yongvanich, N.: Isolation of nanocellulose from pomelo fruit fibers by chemical treatments. J Nat Fiber. 12, 323–331 (2015). https://doi.org/10.1080/15440478.2014.920286

    Article  Google Scholar 

  43. Abitbol, T., Kloser, E., Gary, D.G.: Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20, 785–794 (2013)

    Article  Google Scholar 

  44. Wagberg, L., Decher, G., Norgren, M., Lindstrom, T., Ankerfors, M., Axnas, K.: The build-up of polyelectrolyte multilayers of microfibrillated vellulose and cationic polyelectrolytes. Langmuir 24, 784–795 (2008)

    Article  Google Scholar 

  45. Nelson, M.L., O’Connor, R.T.: Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J. Appl. Polym. Sci. 8, 1325–1341 (1964)

    Article  Google Scholar 

  46. Roman, M., Winter, W.T.: Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5, 1671–1677 (2004)

    Article  Google Scholar 

  47. Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    Article  Google Scholar 

  48. Guillemet, F., Piculell, L.: Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant. Mixed micelle formation and associative phase separation. J. Phys. Chem. 99, 9201–9209 (1995)

    Article  Google Scholar 

  49. Solikhin, A., Hadi, Y.S., Massijaya, M.Y., Nikmatin, S.: Basic properties of oven-heat treated oil palm empty fruit bunch stalk fibers. BioResources 11, 2224–2237 (2016)

    Article  Google Scholar 

  50. Hubbe, M.A., Rojas, O.J., Lucia, L.A.: Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. BioResources 10(3), 6095–6206 (2015)

    Article  Google Scholar 

  51. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R.: How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Tech. 4(1), 97–118 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the College of Vocational Studies and Surfactant and Bioenergy Research Center (SBRC), Bogor Agricultural University (IPB University) for the resources and laboratory facilities support. Many thanks are expressed to Mr. Nugraha Edhi Suyatma for his support and help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [DYH], [EH], [KS], and [EW]. The first draft of the manuscript was written by [DYH] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dwi Yuni Hastati or Erliza Hambali.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastati, D.Y., Hambali, E., Syamsu, K. et al. Enhanced Hydrophobicity of Nanofibrillated Cellulose Through Surface Modification Using Cetyltrimethylammonium Chloride Derived from Palmityl Alcohol. Waste Biomass Valor 12, 5147–5159 (2021). https://doi.org/10.1007/s12649-021-01366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01366-5

Keywords

Navigation