Skip to main content
Log in

Set-theoretic solutions of the Yang–Baxter equation, associated quadratic algebras and the minimality condition

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Given a finite non-degenerate set-theoretic solution (Xr) of the Yang–Baxter equation and a field K, the structure K-algebra of (Xr) is \(A=A(K,X,r)=K\langle X\mid xy=uv \text{ whenever } r(x,y)=(u,v)\rangle \). Note that \(A=\oplus _{n\ge 0} A_n\) is a graded algebra, where \(A_n\) is the linear span of all the elements \(x_1\cdots x_n\), for \(x_1,\dots ,x_n\in X\). One of the known results asserts that the maximal possible value of \(\dim (A_2)\) corresponds to involutive solutions and implies several deep and important properties of A(KXr). Following recent ideas of Gateva-Ivanova (A combinatorial approach to noninvolutive set-theoretic solutions of the Yang–Baxter equation. arXiv:1808.03938v3 [math.QA], 2018), we focus on the minimal possible values of the dimension of \(A_2\). We determine lower bounds and completely classify solutions (Xr) for which these bounds are attained in the general case and also in the square-free case. This is done in terms of the so called derived solution, introduced by Soloviev and closely related with racks and quandles. Several problems posed by Gateva-Ivanova (2018) are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruskiewitsch, N., Graña, M.: From racks to pointed Hopf algebras. Adv. Math. 178, 177–243 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bachiller, D.: Counterexample to a conjecture about braces. J. Algebra 453, 160–176 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bachiller, D.: Extensions, matched products and simple braces. J. Pure Appl. Algebra 222, 1670–1691 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bachiller, D.: Solutions of the Yang–Baxter equation associated to skew left braces, with applications to racks. J. Knot Theory Ramif. 27(8), 1850055 (2018). 36 pp

    MathSciNet  MATH  Google Scholar 

  5. Bachiller, D., Cedó, F., Jespers, E.: Solutions of the Yang–Baxter equation associated with a left brace. J. Algebra 463, 80–102 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bachiller, D., Cedó, F., Jespers, E., Okniński, J.: Iterated matched products of finite braces and simplicity; new solutions of the Yang–Baxter equation. Trans. Am. Math. Soc. 370, 4881–4907 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bachiller, D., Cedó, F., Jespers, E., Okniński, J.: Asymmetric product of left braces and simplicity; new solutions of the Yang–Baxter equation. Commun. Contemp. Math. 21(81850042), 30 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Bachiller, D., Cedó, F., Vendramin, L.: A characterization of finite multipermutation solutions of the Yang–Baxter equation. Publ. Mat. 62(2), 641–649 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Carter, J.S., Jelsovsky, D., Kamada, S., Langford, L., Saito, M.: Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Am. Math. Soc. 355(10), 3947–3989 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Catino, F., Colazzo, I., Stefanelli, P.: Regular subgroups of the afine group and asymmetric product of braces. J. Algebra 455, 164–182 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Cedó, F., Jespers, E., Okniński, J.: Semiprime quadratic algebras of Gelfand–Kirillov dimension one. J. Algebra Appl. 3, 283–300 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Cedó, F., Jespers, E., Okniński, J.: The Gelfand–Kirillov dimension of quadratic algebras satisfying the cyclic condition. Proc. Am. Math. Soc. 134, 653–663 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Cedó, F., Jespers, E., Okniński, J.: Braces and the Yang–Baxter equation. Commun. Math. Phys. 327, 101–116 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Cedó, F., Okniński, J.: Gröbner bases for quadratic algebras of skew type. Proc. Edinb. Math. Soc. (2) 55(2), 387–401 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Childs, L.N.: Skew braces and the Galois correspondence for Hopf Galois structures. J. Algebra 511, 270–291 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Drinfeld, V.G.: On Some Unsolved Problems in Quantum Group Theory. Quantum Groups. Lecture Notes Mathematics, vol. 1510, pp. 1–8. Springer, Berlin (1992)

    Google Scholar 

  17. Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 100, 169–209 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Gateva-Ivanova, T.: Skew polynomial rings with binomial relations. J. Algebra 185(3), 710–753 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Gateva-Ivanova, T.: A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation. J. Math. Phys. 45, 3828–3858 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Gateva-Ivanova, T.: Quadratic algebras, Yang–Baxter equation, and Artin–Schelter regularity. Adv. Math. 230, 2152–2175 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Gateva-Ivanova, T.: Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups. Adv. Math. 338, 649–701 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Gateva-Ivanova, T.: A combinatorial approach to noninvolutive set-theoretic solutions of the Yang–Baxter equation (2018). Preprint arXiv:1808.03938v3 [math.QA]

  23. Gateva-Ivanova, T., Jespers, E., Okniński, J.: Quadratic algebras of skew type and the underlying monoids. J. Algebra 270, 635–659 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Gateva-Ivanova, T., Majid, S.: Matched pairs approach to set theoretic solutions of the Yang–Baxter equation. J. Algebra 319(4), 1462–1529 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of \(I\)-type. J. Algebra 206, 97–112 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Guarnieri, L., Vendramin, L.: Skew braces and the Yang–Baxter equation. Math. Comput. 86(307), 2519–2534 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Jespers, E., Kubat, L., Van Antwerpen, A.: The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation. Trans. Am. Math. Soc. 372(10), 7191–7223 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Jespers, E., Okniński, J.: Noetherian Semigroup Algebras. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  29. Jespers, E., Van Campenhout, M.: Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids II. J. Algebra 492, 524–546 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Joyce, D.: A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23, 37–65 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Joyce, D.: Simple quandles. J. Algebra 79, 307–318 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Lebed, V.: Cohomology of idempotent braidings with applications to factorizable monoids. Int. J. Algebra Comput. 27, 421–454 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Lebed, V., Vendramin, L.: Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation. Adv. Math. 304, 1219–1261 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Lebed, V., Vendramin, L.: On the structure groups of set-theoretic solutions to the Yang–Baxter equation. Proc. Edinburgh Math. Soc. 62, 683–717 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Lu, J., Yan, M., Zhu, Y.: On the set-theoretical Yang–Baxter equation. Duke Math. J. 104, 1–18 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Manin, Y.: Quantum Groups and Non-commutative Geometry. Université de Montréal, Montreal (1988)

    MATH  Google Scholar 

  37. Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lectures Series, vol. 37. American Mathematical Society, New York (2005)

    MATH  Google Scholar 

  38. Rump, W.: Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra 307, 153–170 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Smoktunowicz, A.: On Engel groups, nilpotent groups, rings, braces and the Yang–Baxter equation. Trans. Am. Math. Soc. 370, 6535–6564 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Smoktunowicz, A., Smoktunowicz, A.: Set-theoretic solutions of the Yang–Baxter equation and new classes of R-matrices. Linear Algebra Appl. 546, 86–114 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Smoktunowicz, A., Vendramin, L.: On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra 2(1), 47–86 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Soloviev, A.: Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation. Math. Res. Lett. 7, 577–596 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Cedó.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by the Grants MINECO-FEDER MTM2017-83487-P and AGAUR 2017SGR1725 (Spain). The second author is supported in part by Onderzoeksraad of Vrije Universiteit Brussel and Fonds voor Wetenschappelijk Onderzoek (Belgium). The third author is supported by the National Science Centre Grant 2016/23/B/ST1/01045 (Poland).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cedó, F., Jespers, E. & Okniński, J. Set-theoretic solutions of the Yang–Baxter equation, associated quadratic algebras and the minimality condition. Rev Mat Complut 34, 99–129 (2021). https://doi.org/10.1007/s13163-019-00347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00347-6

Keywords

Mathematics Subject Classification

Navigation