Skip to main content
Log in

Chaotic sequence and opposition learning guided approach for data clustering

  • Short paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Data clustering is a prevalent problem that belongs to the data mining domain. It aims to partition the given data objects into some specified number of clusters based on the sum of the intra-cluster distances. It is an NP-hard problem, and many heuristic approaches have already been proposed to target the desired objective. However, during the search process, the problem of local entrapment is prevalent due to nonlinear objective functions and a large range of search domains. In this paper, an opposition learning and chaotic sequence guided approaches are incorporated in a fast converging evolutionary algorithm called improved environmental adaptation method with real parameter (IEAM-R) for solving the data clustering problem. A chaotic sequence generated by a sinusoidal chaotic map has been utilized to target promising solutions in the search domain. On the other hand, the inclusion of the opposition learning-based approach allows the solutions to explore more appropriate locations in the search domain. The performance of the proposed approach is compared against some well-known algorithms using fitness values, statistical values, convergence curves, and box plots. These comparisons justify the efficacy of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Han JKM (2001) Data mining: concepts and techniques. Morgan Kaufmann, Los Altos

    Google Scholar 

  2. Halberstadt W, Douglas TS (2008) Fuzzy clustering to detect tuberculous meningitis-associated hyperdensity in CT images. Comput Biol Med 38(2):165–170

    Article  Google Scholar 

  3. Webb AR (2003) Statistical pattern recognition. Wiley, New York

    MATH  Google Scholar 

  4. Zhou H, Liu Y (2008) Accurate integration of multi-view range images using k-means clustering. Pattern Recognit 41(1):152–175

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu G, Zhou S, Guan J, Hu X (2008) Towards effective document clustering: a constrained k-means based approach. Inf Process Manag 44(4):1397–1409

    Article  Google Scholar 

  6. Li Y, Chung SM, Holt JD (2008) Text document clustering based on frequent word meaning sequences. Data Knowl Eng 64(1):381–404

    Article  Google Scholar 

  7. El Aziz MA, Ewees AA, Hassanien AE (2018) Multi-objective whale optimization algorithm for content-based image retrieval. Multimed Tools Appl 77(19):26-135-26–172

    Article  Google Scholar 

  8. Chuang L-Y, Hsiao C-J, Yang C-H (2011) Chaotic particle swarm optimization for data clustering. Expert Syst Appl 38(12):14-555-14–563

    Article  Google Scholar 

  9. Zhou K, Yang S (2020) Effect of cluster size distribution on clustering: a comparative study of k-means and fuzzy c-means clustering. Pattern Anal Appl 23(1):455–466

    Article  MathSciNet  Google Scholar 

  10. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut Comput 16:1–18

    Article  Google Scholar 

  11. Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S (2020) Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowl Inf Syst 62:507–539

    Article  Google Scholar 

  12. Kushwaha N, Pant M, Kant S, Jain VK (2018) Magnetic optimization algorithm for data clustering. Pattern Recognit Lett 115:59–65

    Article  Google Scholar 

  13. van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: The 2003 congress on evolutionary computation, 2003. CEC ’03, vol 1, pp 215–220

  14. Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(03):297–321

    Article  Google Scholar 

  15. Abualigah LM, Khader AT, AlBetar MA, Hanandeh ES (2016) Unsupervised text feature selection technique based on particle swarm optimization algorithm for improving the text clustering. In: 1st EAI international conference on computer science and engineering. European Alliance for Innovation (EAI), p 169

  16. Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  17. Caruso G, Gattone S, Fortuna F, Di Battista T (2020) Cluster analysis for mixed data: an application to credit risk evaluation. Socio-Econ Plan Sci 100850

  18. Forkan ARM, Khalil I, Kumarage H (2020) Patient clustering using dynamic partitioning on correlated and uncertain biomedical data. Comput Methods Progr Biomed 190:105483

    Article  Google Scholar 

  19. Shelokar P, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  20. Niknam T, Olamaie J, Amiri B (2008) A hybrid evolutionary algorithm based on ACO and SA for cluster analysis. J Appl Sci 8(15):2695–2702

    Article  Google Scholar 

  21. Niknam T, Firouzi BB, Nayeripour M (2008) An efficient hybrid evolutionary algorithm for cluster analysis. World Appl Sci J

  22. Niknam T, Amiri B (2010) An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput 10(1):183–197

    Article  Google Scholar 

  23. Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45

    Article  Google Scholar 

  24. Talaei K, Rahati A, Idoumghar L (2020) A novel harmony search algorithm and its application to data clustering. Appl Comput 92:106273

    Google Scholar 

  25. Singh T (2020) A novel data clustering approach based on whale optimization algorithm. Expert Syst 37(6):1–25

    Google Scholar 

  26. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  27. Saida IB, Nadjet K, Omar B (2014) A new algorithm for data clustering based on cuckoo search optimization. In: Genetic and evolutionary computing. Springer, pp 55–64

  28. Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7

    Article  Google Scholar 

  29. Senthilnath J, Das V, Omkar S, Mani V (2013) Clustering using levy flight cuckoo search. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012). Springer, pp 65–75

  30. Abdulwahab HA, Noraziah A, Alsewari AA, Salih SQ (2019) An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems. IEEE Access 7:142-085-142–096

    Article  Google Scholar 

  31. Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34(4):1366–1375

    Article  MathSciNet  Google Scholar 

  32. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187(2):1076–1085

    MathSciNet  MATH  Google Scholar 

  33. Singh T (2020) A chaotic sequence-guided Harris hawks optimizer for data clustering. Neural Comput Appl 32:17789–17803

    Article  Google Scholar 

  34. Boushaki SI, Kamel N, Bendjeghaba O (2018) A new quantum chaotic cuckoo search algorithm for data clustering. Expert Syst Appl 96:358–372

    Article  MATH  Google Scholar 

  35. Kaur A, Pal SK, Singh AP (2019) Hybridization of chaos and flower pollination algorithm over k-means for data clustering. Appl Soft Comput 97:105523

    Article  Google Scholar 

  36. Wan M, Wang C, Li L, Yang Y (2012) Chaotic ant swarm approach for data clustering. Appl Soft Comput 12(8):2387–2393

    Article  Google Scholar 

  37. Rojas-Morales N, Rojas M-CR, Ureta EM (2017) A survey and classification of opposition-based metaheuristics. Comput Ind Eng 110:424–435

    Article  Google Scholar 

  38. Kumar Y, Sahoo G (2017) An improved cat swarm optimization algorithm based on opposition-based learning and Cauchy operator for clustering. JIPS 13(4):1000–1013

    Google Scholar 

  39. Sun L, Chen S, Xu J, Tian Y (2019) Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation. Complexity 2019

  40. Xu Q, Wang L, Wang N, Hei X, Zhao L (2014) A review of opposition-based learning from 2005 to 2012. Eng Appl Artif Intell 29:1–12

    Article  Google Scholar 

  41. Sharma B, Prakash R, Tiwari S, Mishra K (2017) A variant of environmental adaptation method with real parameter encoding and its application in economic load dispatch problem. Appl Intell 47(2):409–429

    Article  Google Scholar 

  42. Singh T, Singh R, Mishra KK (2018) Software cost estimation using environmental adaptation method. Proc Comput Sci 143:325–332

    Article  Google Scholar 

  43. Singh T, Mishra KK, Ranvijay (2020) A variant of EAM to uncover community structure in complex networks. Int J Bio-Inspired Comput 16(2):102–110

    Article  Google Scholar 

  44. Singh T, Mishra KK et al (2019) Multiobjective environmental adaptation method for solving environmental/economic dispatch problem. Evolut Intell 12(2):305–319

    Article  Google Scholar 

  45. Singh N, Mishra K, Bhatia S (2020) Seam-an improved environmental adaptation method with real parameter coding for salient object detection. Multimed Tools Appl 79:12995–13010

    Article  Google Scholar 

  46. Singh T, Mishra KK et al (2019) Data clustering using environmental adaptation method. In: International conference on hybrid intelligent systems. Springer, pp 156–164

  47. Li Y, Deng S, Xiao D (2011) A novel hash algorithm construction based on chaotic neural network. Neural Comput Appl 20(1):133–141

    Article  Google Scholar 

  48. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  49. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  50. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  51. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666

    Article  Google Scholar 

  52. Inman R, Davenpot J (1980) Approximations of the critical region of the Friedman statistic. Commun Stat Theory Methods A 9:571–595

    Article  Google Scholar 

  53. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  54. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tribhuvan Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T., Saxena, N. Chaotic sequence and opposition learning guided approach for data clustering. Pattern Anal Applic 24, 1303–1317 (2021). https://doi.org/10.1007/s10044-021-00964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-00964-2

Keywords

Navigation