Skip to main content
Log in

Correlation of Microstructural Evolution with Mechanical and Tribological Behaviour of SS 304 Specimens Developed Through SLM Technique

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This research work focuses on the development of SS 304 specimens using the selective laser melting technique and analyses the microstructural modifications. Further, it correlates the evolution of microstructure with mechanical properties like microhardness, nanoindentation and tribological behaviour. The conventionally prepared as-cast SS 304 specimens were taken for comparison of the results obtained with the SLM technique. The diffraction pattern obtained from x-rays disclosed the absence of δ phase and confirmed that refinement of grains occurred in the structural level through decrease in the intensity of α peaks. Optical micrograph witnessed that the grains were in micron and sub-micron size. SEM images depicted the presence of columnar and cellular sub-grains within a grain which were in ultrafine level. The microhardness and nanoindentation results obtained for the SLM specimen were almost multiple times higher than the conventional as-cast specimens. There was a significant improvement in the wear resistance in the SLM specimens than the conventional as-cast specimens. From the results, SLM is found to be a favourable technique to manufacture metallic components in a way to obtain a good service life of engineering components.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The experimental datasets obtained from this research work and then the analyzed results during the current study are available from the corresponding author on reasonable request.

References

  1. K. Benarji, Y. Ravikumar, A.N. Jinoop, C.P. Paul, K.S. Bindra, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00838-y

    Article  CAS  Google Scholar 

  2. B. Sagbas, Met. Mater. Int. 26, 143–153 (2020)

    Article  CAS  Google Scholar 

  3. B. Mueller, Assem. Autom. 32 (2012). https://doi.org/10.1108/aa.2012.03332baa.010

  4. Y. Zhai, D.A. Lados, J.L. LaGoy, JOM 66, 808 (2014)

    Article  Google Scholar 

  5. B. Vayre, F. Vignat, F. Villeneuve, Mech. Ind. 13, 89 (2012)

    Article  CAS  Google Scholar 

  6. X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski, R. Huang, W. Ma, H. Liao, M. Liu, Surf. Coat. Tech. 371, 161 (2019)

    Article  CAS  Google Scholar 

  7. R. Sásik, R. Bašt’ovanský, M. Hoč, R. Madaj, P. Spišák The Comparison of Selected Strength Indicators of Manufactured Prototypes Produced by Metal Additive Manufacturing (3D Printing) System (Springer, Cham, 2020), pp. 501–508

    Google Scholar 

  8. J. Strößner, M. Terock, U. Glatzel, Adv. Eng. Mater. 17, 1099 (2015)

    Article  Google Scholar 

  9. S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, J. Mater. Sci. Technol. 31, 946 (2015)

    Article  CAS  Google Scholar 

  10. H. Schwab, F. Palm, U. Kühn, J. Eckert, Mater. Design 105, 75 (2016)

    Article  CAS  Google Scholar 

  11. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Tech. 249, 255–263 (2017)

    Article  CAS  Google Scholar 

  12. E. Tascioglu, Y. Karabulut, Y. Kaynak, Int. J. Adv. Manuf. Tech. 107, 1947–1956 (2020)

    Article  Google Scholar 

  13. Y. Kaynak, O. Kitay, Addit. Manuf. 26, 84–93 (2019)

    CAS  Google Scholar 

  14. M.L. Montero Sistiaga, S. Nardone, C. Hautfenne, J. Van Humbeeck, in Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, August 8-10, 2016 (University of Texas, Austin, 2016), pp. 1–8

  15. W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, J. Alloy. Compd. 740, 910–925 (2018)

    Article  CAS  Google Scholar 

  16. Z. Wang, Y. Fang, J. Qi, Y. Zhang, Y. Yu, J. Wu, J. Univ. Sci. Technol. B. 14, 420 (2007)

    Article  CAS  Google Scholar 

  17. N. Jeyaprakash, C.-H. Yang, M. Duraiselvam, G. Prabu, Results Phys. 12, 1610 (2019)

    Article  Google Scholar 

  18. R.J. Talib, S. Saad, M.R.M. Toff, H. Hashim, Solid State Sci. Technol. 11, 109 (2003)

    Google Scholar 

  19. R. Clinktan, V. Senthil, K.R. Ramkumar, S. Sivasankaran, S. Sivasankaran, F.A. Al-Mufadi, Ceram. Int. 45, 18691 (2019)

    Article  CAS  Google Scholar 

  20. R. Ramesh, I. Dinaharan, R. Kumar, E.T. Akinlabi, J. Mater. Eng. Perform. 28, 498 (2019)

    Article  CAS  Google Scholar 

  21. M. Zietala, T. Durejko, M. Polanski, Mater. Sci. Eng. A 677, 1 (2016)

    Article  CAS  Google Scholar 

  22. J. Hou, W. Chen, Z. Chen, K. Zhang, A. Huang, J. Mater. Sci. Technol. 48, 63 (2020)

    Article  Google Scholar 

  23. M. Wang, T. Voisin, J.T. McKeown, Nat. Mater. 17, 63 (2018)

    Article  CAS  Google Scholar 

  24. J. Liu, Y. Jin, X. Liu, Sci. Rep. 14, 35345 (2016)

    Article  Google Scholar 

  25. M.A. Barcelos, M.V. Barcelos, J.S. Araújo Filho, A.R. Franco Jr., E.A. Vieira, REM Int. Eng. J. 70, 293 (2017)

  26. N. Jeyaprakash, C.-H. Yang, S.-P. Tseng, Int. J. Adv. Manuf. Tech. 106, 2347 (2020)

    Article  Google Scholar 

  27. S. Dachi, N. Ueda, Adv. Powder Technol. 24, 818 (2013)

    Article  Google Scholar 

  28. J. Huang, X. Yan, C. Chang, Y. Xie, W. Ma, R. Huang, R. Zhao, S. Li, M. Liu, H. Liao, Surf. Coat. Tech. 395, 125936 (2020)

    Article  CAS  Google Scholar 

  29. T. Rong, G. Dongdong, Q. Shi, S. Cao, M. Xia, Surf. Coat. Tech. 307, 418 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

Funding

Authors wishes to thank Ministry of Science and Technology (MOST), Taiwan for providing the necessary funding to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jeyaprakash.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaprakash, N., Yang, CH. & Ramkumar, K.R. Correlation of Microstructural Evolution with Mechanical and Tribological Behaviour of SS 304 Specimens Developed Through SLM Technique. Met. Mater. Int. 27, 5179–5190 (2021). https://doi.org/10.1007/s12540-020-00933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00933-0

Keywords

Navigation