Skip to main content

Advertisement

Log in

Multi-method investigation of mass transfer mechanisms in a retrogressive clayey landslide (Harmalière, French Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The mass transfer mechanisms in landslides are complex to monitor because of their suddenness and spatial coverage. The active clayey Harmalière landslide, located 30 km south of Grenoble in the French Alps, exhibits two types of behavior: in its upper part, decameter-sized clay blocks slide along a listric slip surface, while a flow-like mechanism is observed in a clayey remolded material a few hundred meters below the headscarp. The landslide underwent a major retrogression affecting 45 ha in March 1981 and has experienced multiple reactivations since then. The last major event took place on the 26th of June 2016, and a large investigation survey was conducted to better understand the reactivation mechanism. A multi-method investigation was carried out at different temporal and spatial scales, including aerial photograph and light detection and ranging processing, correlation of optical satellite images, global navigation satellite system monitoring, continuous seismic monitoring, and passive seismic survey. The morphological evolution of the landslide was traced over the last 70 years, showing a headscarp retrogression of 700 m during multiple reactivations and a total mass transfer of more than 6 × 106 m3. The detailed study of the 2016 event allowed to track and understand the mechanism of a mass transfer of 1 × 106 m3 in 5 weeks, from a sliding mechanism at the headscarp to an earthflow at the toe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al Hayari M, Antoine P, Biguenet G, Monnet J, Mora H (1990) Détermination des caractéristiques mécaniques au cisaillement des argiles litées. Cas du glissement de la combe d’Harmalière. Rev Fr Géotech (50):71–77

  • Baum RL, Messerich J, Fleming RW (1998) Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii. Environ Eng Geosci 4:283–306. https://doi.org/10.2113/gseegeosci.iv.3.283

    Article  Google Scholar 

  • Bertello L, Berti M, Castellaro S, Squarzoni G (2018) Dynamics of an active earthflow inferred from surface wave monitoring. J Geophys Res Earth Surf 123:1811–1834. https://doi.org/10.1029/2017JF004233

    Article  Google Scholar 

  • Besson L (1996) Les risques naturels en montagne: traitement, prévention, surveillance. Artès-publialp

  • Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol Process 26:2128–2142. https://doi.org/10.1002/hyp.7986

    Article  Google Scholar 

  • Bièvre G, Kniess U, Jongmans D, Pathier E, Schwartz S, van Western C, Villemin T, Zumbo V (2011) Paleotopographic control of landslides in lacustrine deposits (Trièves plateau, French western Alps). Geomorphology 125:214–224. https://doi.org/10.1016/j.geomorph.2010.09.018

    Article  Google Scholar 

  • Bontemps N, Lacroix P, Doin M-P (2018) Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens Environ 210:144–158. https://doi.org/10.1016/j.rse.2018.02.023

    Article  Google Scholar 

  • Carrière S, Bièvre G, Jongmans D, Chambon G, Bellot H, Lebourg T (2018) Measurement of geophysical parameters on clay samples at the solid–fluid transition. Near Surf Geophys 16:23–37. https://doi.org/10.3997/1873-0604.2017039

    Article  Google Scholar 

  • Carson MA (1977) On the retrogression of landslides in sensitive muddy sediments. Can Geotech J 14:582–602. https://doi.org/10.1139/t77-059

    Article  Google Scholar 

  • Coltorti M, Tognaccini S (2019) The gravitational landscape of Montespertoli (Valdelsa Basin, Tuscany, Italy): state of activity and characteristics of complex landslides. Geomorphology 340:129–142. https://doi.org/10.1016/j.geomorph.2019.04.030

    Article  Google Scholar 

  • Comegna L, Picarelli L, Urciuoli G (2007) The mechanics of mudslides as a cyclic undrained–drained process. Landslides 4:217–232. https://doi.org/10.1007/s10346-007-0083-2

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili J (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. https://doi.org/10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Cruden D, Varnes DJ (1996) Landslide types and processes. In: Turner A, Schuster R (eds) Landslides investigation and mitigation. National Academic Press, Washington, pp 36–75

    Google Scholar 

  • Debella-Gilo M, Kääb A (2012) Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images. Remote Sens 4:43–67. https://doi.org/10.3390/rs4010043

    Article  Google Scholar 

  • Delacourt C, Allemand P, Casson B, Vadon H (2004) Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020193

  • Demers D, Robitaille D, Locat P, Potvin J (2014) Inventory of large landslides in sensitive clay in the province of Québec, Canada: preliminary analysis. J.-S. L’Heureux et al (eds), Landslides in sensitive clays: from geosciences to risk management. Adv Nat Technol Hazards Res 36:77–89. https://doi.org/10.1007/978-94-007-7079-9

    Article  Google Scholar 

  • Fernandez P, Whitworth M (2016) A new technique for the detection of large scale landslides in glacio-lacustrine deposits using image correlation based upon aerial imagery: a case study from the French Alps. Int J Appl Earth Obs Geoinf 52:1–11. https://doi.org/10.1016/j.jag.2016.05.002

    Article  Google Scholar 

  • Fiolleau S, Jongmans D, Bièvre G, Chambon G, Baillet L, Vial B (2020) Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps. Geophys J Int 221:1777–1788. https://doi.org/10.1093/gji/ggaa050

    Article  Google Scholar 

  • Foti S, Hollender F, Garofalo F et al (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng 16:2367–2420. https://doi.org/10.1007/s10518-017-0206-7

    Article  Google Scholar 

  • Gibbons SJ, Ringdal F (2006) The detection of low magnitude seismic events using array-based waveform correlation. Geophys J Int 165:149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x

    Article  Google Scholar 

  • Giordan D, Allasia P, Manconi A, Baldo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzetti F (2013) Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology 187:61–79. https://doi.org/10.1016/j.geomorph.2012.12.035

    Article  Google Scholar 

  • Giraud A, Antoine P, Van Asch TWJ, Nieuwenhuis JD (1991) Geotechnical problems caused by glaciolacustrine clays in the French Alps. Eng Geol 31:185–195. https://doi.org/10.1016/0013-7952(91)90005-6

    Article  Google Scholar 

  • Gregersen O (1981) The quick clay landslide in Rissa, Norway. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stocholm, vol. 3, pp. 421–426

  • Gunn DA, Chambers JE, Hobbs PRN, Ford JR, Wilkinson PB, Jenkins GO, Merritt A (2013) Rapid observations to guide the design of systems for long-term monitoring of a complex landslide in the Upper Lias clays of North Yorkshire, UK. Q J Eng Geol Hydrogeol 46:323–336. https://doi.org/10.1144/qjegh2011-028

    Article  Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115:F03016. https://doi.org/10.1029/2009JF001532

    Article  Google Scholar 

  • Helmstetter A, Moreau L, Nicolas B, Comon P, Gay M (2015) Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d’Argentière, France): evidence for hydraulic fracturing? J Geophys Res Earth Surf 120:402–416. https://doi.org/10.1002/2014JF003289

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Jaboyedoff M, Carrea D, Derron M-H, Oppikofer T, Penna IM, Rudaz B (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 267:105478. https://doi.org/10.1016/j.enggeo.2020.105478

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. https://doi.org/10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56. https://doi.org/10.1016/j.enggeo.2008.10.005

    Article  Google Scholar 

  • Kohv M, Talviste P, Hang T, Kalm V, Rosentau A (2009) Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology 106:315–323. https://doi.org/10.1016/j.geomorph.2008.11.013

    Article  Google Scholar 

  • L’Heureux JS (2012) A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. Proc. of the 11th Int. & 2nd North American Symp. on Landslides, Banff, Canada, 3–8 June 2012

  • Lacroix P, Araujo G, Hollingsworth J, Taipe E (2019) Self-entrainment motion of a slow-moving landslide inferred from landsat-8 time series. J Geophys Res Earth Surf 124:1201–1216. https://doi.org/10.1029/2018JF004920

    Article  Google Scholar 

  • Lacroix P, Berthier E, Maquerhua ET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens Environ 165:148–158. https://doi.org/10.1016/j.rse.2015.05.010

    Article  Google Scholar 

  • Lacroix P, Bièvre G, Pathier E, Kniess U, Jongmans D (2018) Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens Environ 215:507–516. https://doi.org/10.1016/j.rse.2018.03.042

    Article  Google Scholar 

  • Lacroix P, Dehecq A, Taipe E (2020) Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat Geosci 13:56–60. https://doi.org/10.1038/s41561-019-0500-x

    Article  Google Scholar 

  • Lazecký M, Çomut FC, Hlaváčová I, Gürboğa Ş (2015) Practical application of satellite-based SAR interferometry for the detection of landslide activity. Proc Earth Planet Sci 15:613–618. https://doi.org/10.1016/j.proeps.2015.08.113

    Article  Google Scholar 

  • Leprince S, Barbot S, Ayoub F, Avouac J-P (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 45:1529–1558. https://doi.org/10.1109/TGRS.2006.888937

    Article  Google Scholar 

  • Locat P, Leroueil S, Locat J (2008) Remaniement et mobilité des débris de glissements de terrain dans les argiles sensibles de l’est du Canada. In: Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, pp 97–106

    Google Scholar 

  • Luo J, Niu F, Lin Z, Liu M, Yin G (2019) Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet plateau: an example from the Beiluhe Region. Geomorphology 341:79–85. https://doi.org/10.1016/j.geomorph.2019.05.020

    Article  Google Scholar 

  • Mackey BH, Roering JJ (2011) Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. GSA Bull 123:1560–1576. https://doi.org/10.1130/B30306.1

    Article  Google Scholar 

  • Mainsant G, Larose E, Brönnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Geophys Res 117:F01030–F01030. https://doi.org/10.1029/2011JF002159

    Article  Google Scholar 

  • Monjuvent G (1973) La transfluence Durance-Isère. Essai de synthèse du Quaternaire du bassin du Drac (Alpes françaises). Géol Alpine 49:57–118

    Google Scholar 

  • Moulin C, Robert Y (2004) Le glissement de l'Harmalière sur la commune de Sinard. In: Proceedings of the workshop Ryskhydrogeo, Program Interreg III, La Mure (France), 11 pp

  • Mulas M, Ciccarese G, Truffelli G, Corsini A (2020) Integration of digital image correlation of Sentinel-2 data and continuous GNSS for long-term slope movements monitoring in moderately rapid landslides. Remote Sens 12:2605. https://doi.org/10.3390/rs12162605

    Article  Google Scholar 

  • Pagano L, Picarelli L, Rianna G, Urciuoli G (2010) A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils. Landslides 7:273–289. https://doi.org/10.1007/s10346-010-0216-x

    Article  Google Scholar 

  • Pazzi V, Morelli S, Fanti R (2019) A review of the advantages and limitations of geophysical investigations in landslide studies. Int J Geophys 2019:1–27. https://doi.org/10.1155/2019/2983087

    Article  Google Scholar 

  • Poli P (2017) Creep and slip: seismic precursors to the Nuugaatsiaq landslide (Greenland). Geophys Res Lett 44:8832–8836. https://doi.org/10.1002/2017GL075039

    Article  Google Scholar 

  • Renalier F, Jongmans D, Campillo M, Bard P-Y (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross-correlation. J Geophys Res 115:F03032. https://doi.org/10.1029/2009JF001538

    Article  Google Scholar 

  • RESIF/OMIV (2006) National French Landslide Observatory Facility and RESIF Datacenter: French Multidisciplinary Observatory of Versant Instabilities. RESIF - Réseau Sismologique et géodésique Français. Seismic Network. https://doi.org/10.15778/RESIF.MT

  • Rokoengen K, Jespersen MN, Kleiv RA, Sæterbø E (2001) The 1345 slide and flood disaster in the Gauldalen valley, mid-Norway: a new interpretation. Nor Geogr Tidsskr - Nor J Geogr 55:57–70. https://doi.org/10.1080/00291950121138

    Article  Google Scholar 

  • Stumpf A, Malet J-P, Allemand P, Ulrich P (2014) Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J Photogramm Remote Sens 95:1–12. https://doi.org/10.1016/j.isprsjprs.2014.05.008

    Article  Google Scholar 

  • Stumpf A, Malet J-P, Delacourt C (2017) Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens Environ 189:40–55. https://doi.org/10.1016/j.rse.2016.11.007

    Article  Google Scholar 

  • Takasu T, Kubo N, Yasuda A (2007) A. Development, evaluation and application of RTKLIB: a program library for RTK-GPS. In Proceedings of the International Symposium on GPS/GNSS 2007, Johor Bahru, Malaysia, 5–7 November 2007; pp. 213–218

  • Tavenas F, Flon P, Leroueil S, Lebuis J (1983) Remolding energy and risk of slide retrogression in sensitive clays. In: Proceedings of the symposium on slopes on soft clays, linköping, sweden. SGI report. pp 423–454

  • Tokimatsu K (1997) Geotechnical site characterization using surface waves. Proc First Int Conf Earthq Geotech Eng 3:1333–1368

    Google Scholar 

  • Travelletti J, Malet J-P, Samyn K et al (2013) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides 10:37–54. https://doi.org/10.1007/s10346-011-0310-8

    Article  Google Scholar 

  • Turmel D, Potvin J, Demers D, Locat P, Locat A, Locat P, Leroueil S (2018) Empirical estimation of the retrogression and the runout distance of sensitive clay flowslides. In: Proceedings of the Geohazards 7 conference, Canmore, 8 pp

  • Van Asch TWJ, Brinkhorst WH, Buist HJ, Vessem PV (1984) The development of landslides by retrogressive failure in varved clays. Z Geomorphol Suppl 4:165–181

    Google Scholar 

  • van Asch TWJ, Malet J-P, Bogaard TA (2009) The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Nat Hazards Earth Syst Sci 9:739–749. https://doi.org/10.5194/nhess-9-739-2009

    Article  Google Scholar 

  • Wang B, Paudel B, Li H (2009) Retrogression characteristics of landslides in fine-grained permafrost soils, Mackenzie Valley, Canada. Landslides 6(2):121–127

    Article  Google Scholar 

  • Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35:L09301. https://doi.org/10.1029/2008GL033256

    Article  Google Scholar 

  • Wathelet M, Guillier B, Roux P, Cornou C, Ohrnberger M (2018) Rayleigh wave three-component beamforming: signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays. Geophys J Int 215:507–523. https://doi.org/10.1093/gji/ggy286

    Article  Google Scholar 

  • Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vsinversion. J Seismol 12:1–19. https://doi.org/10.1007/s10950-007-9067-x

    Article  Google Scholar 

  • Yamada M, Mori J, Matsushi Y (2016) Possible stick-slip behavior before the Rausu landslide inferred from repeating seismic events. Geophys Res Lett 43:9038–9044. https://doi.org/10.1002/2016GL069288

    Article  Google Scholar 

  • Zerathe S, Lacroix P, Jongmans D, Marino J, Taipe E, Wathelet M, Pari W, Smoll LF, Norabuena E, Guillier B, Tatard L (2016) Morphology, structure and kinematics of a rainfall controlled slow-moving Andean landslide, Peru. Earth Surf Process Landf 41:1477–1493. https://doi.org/10.1002/esp.3913

    Article  Google Scholar 

Download references

Acknowledgements

Meteorological data were provided by OMIV (Multidisciplinary Observatory of Versant Instabilities; (www.ano-omiv.cnrs.fr). The authors thank two anonymous reviewers and the editor who greatly helped to enhance the quality of this paper.

Funding

The authors acknowledge the financial support from the French VOR federative structure, the French national C2ROP project, the French National Research Agency in the framework of the Investissements d’Avenir program (ANR-15-IDEX-02, CDP-RISK), and the LabEx OSUG@2020 (ANR10 LABX56). This work was partly supported by the project SIMOTER 1 funded by the European Union under the ERDF – POIA program and by the French government under the FNADT – CIMA program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Bièvre.

Supplementary Information

ESM 1

(DOCX 1294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiolleau, S., Jongmans, D., Bièvre, G. et al. Multi-method investigation of mass transfer mechanisms in a retrogressive clayey landslide (Harmalière, French Alps). Landslides 18, 1981–2000 (2021). https://doi.org/10.1007/s10346-021-01639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01639-z

Keywords

Navigation