Skip to main content
Log in

On the Forced Surface Quasi-Geostrophic Equation: Existence of Steady States and Sharp Relaxation Rates

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the asymptotic behavior of the surface quasi-geostrophic equation, subject to a small external force. Under suitable assumptions on the forcing, we first construct the steady states and we provide a number of useful a posteriori estimates for them. Importantly, to do so, we only impose minimal cancellation conditions on the forcing function. Our main result is that all \(L^1\cap L^\infty \) localized initial data produces global solutions of the forced SQG, which converge to the steady states in \(L^p({\mathbf {R}}^2), 1<p\le 2\) as time goes to infinity. This establishes that the steady states serve as one point attracting set. Moreover, by employing the method of scaling variables, we compute the sharp relaxation rates, by requiring slightly more localized initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, we denote for conciseness \({{\mathscr {K}}}_n={{\mathscr {K}}}_{{\tilde{\theta }}_{n}}\).

  2. Note however that not all this eigenvalues are isolated, hence they are in the essential spectrum.

  3. Note that its derivation relies on the fact that \(\Vert \nabla \Theta \Vert _{L^\frac{2}{\alpha }}=\Vert \nabla {\tilde{\theta }}\Vert _{L^\frac{2}{\alpha }} <\epsilon _0(p)\).

  4. Which applies since \({\tilde{\theta }}\) is small enough as in the Corollary 5.2.

  5. (which we multiply by a large constant M and we take C large so that \(\frac{2}{\alpha }-1+C>\frac{m+2}{\alpha }-1\).

References

  1. Abidi, H., Hmidi, T.: On the global well posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ben-Artzi, M.: Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Ration. Mech. Anal. 128(4), 329–358 (1994)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  4. Carpio, A.: Asymptotic behavior for the vorticity equations in dimensions two and three. Commun. Partial Differ. Equ. 19(5–6), 827–872 (1994)

    Article  MathSciNet  Google Scholar 

  5. Carrillo, J., Ferreira, L.: Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151(2), 111–142 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chamorro, D., Lemarié-Rieusset, P.G.: Quasi-geostrophic equations, nonlinear Bernstein inequalities and \(\alpha \)-stable processes. Rev. Mat. Iberoam. 28(4), 1109–1122 (2012)

    Article  MathSciNet  Google Scholar 

  8. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50(Special Issue), 97–107 (2001)

    Article  MathSciNet  Google Scholar 

  10. Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212, 875–903 (2014)

    Article  MathSciNet  Google Scholar 

  11. Constantin, P., Tarfulea, A., Vicol, V.: Long time dynamics of forced critical SQG. Commun. Math. Phys. 335, 93–141 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)

    Article  MathSciNet  Google Scholar 

  13. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  Google Scholar 

  14. Cordoba, A., Cordoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dai, M.: Existence and stability of steady-state solutions to the quasi-geostrophic equations in \({{\mathbf{R}}^2}\). Nonlinearity 28(11), 4227–4248 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dong, B., Chen, Z.: Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation. Nonlinearity 19(12), 2919–2928 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ferreira, L., Niche, C., Planas, G.: Decay of solutions to dissipative modified quasi-geostrophic equations. Proc. Am. Math. Soc. 145(1), 287–301 (2017)

    Article  MathSciNet  Google Scholar 

  18. Friedlander, S., Pavlović, N., Vicol, V.: Nonlinear instability for the critically dissipative quasi-geostrophic equation. Commun. Math. Phys. 292(3), 797–810 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gallay, T., Wayne, C.E.: Invariant manifolds and long-time asymptotics of the Navier–Stokes and vorticity equations on \({{\mathbf{R}}^2}\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)

    Article  MathSciNet  Google Scholar 

  20. Gallay, T., Wayne, C.E.: Long-time asymptotics of the Navier–Stokes and vorticity equations on \(R^3\). Philos. Trans. R. Soc. Lond. 360, 2155–2188 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jolly, M., Martinez, V., Sadigov, T., Titi, E.: A determining form for the subcritical surface quasi-geostrophic equation. J. Dyn. Differ. Equ. 31(3), 1457–1494 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kiselev, A., Nazarov, F.: Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation. Nonlinearity 23, 549–554 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Niche, C., Schonbek, M.E.: Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 276(1), 93–115 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Schonbek, M.E.: Asymptotic behavior of solutions to the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 41, 809–823 (1992)

    Article  MathSciNet  Google Scholar 

  26. Schonbek, M., Schonbek, T.: Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete Contin. Dyn. Syst. 13(5), 1277–1304 (2005)

    Article  MathSciNet  Google Scholar 

  27. Stefanov, A., Hadadifard, F.: On the sharp time decay rates for the 2D generalized quasi-geostrophic equation and the Boussinesq system. J. Nonlinear Sci. 29(5), 2231–2296 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas G. Stefanov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by D. Chae.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Stefanov is partially supported by NSF-DMS under No. 1908626.

Appendix A. Proof of Lemma 2.2

Appendix A. Proof of Lemma 2.2

The proof of this lemma is based by some modifications in the proof of relation (4.8), [27]. Recall, that for \(s\in (0,2)\)

$$\begin{aligned}{}[|\nabla |^{s}, g] f (x)= & {} |\nabla |^{s} (g f)- g \ |\nabla |^{s}f= c_s \int \frac{f(x) g(x)- f(y) g(y)}{|x- y|^{2+ s}} dy- g(x) c_s\int \frac{f(x)- f(y)}{|x- y|^{2+ s}} dy \\= & {} c_s \int \frac{ f(y)( g(x)- g(y) )}{|x- y|^{2+ s}} dy. \end{aligned}$$

Introduce a smooth partition of unity, that is a function \(\psi \in C^\infty _0({\mathbf {R}})\), \(supp\ \psi \subset (\frac{1}{2},2)\), so that

$$\begin{aligned} \sum _{k=-\infty }^\infty \psi (2^{-k} |\eta |) = 1, \eta \in {\mathbf {R}}^2, \eta \ne 0. \end{aligned}$$

Introduce another \(C^\infty _0\) function \(\Psi (z)=|z|^\sigma \psi (z)\), so that we can decompose

$$\begin{aligned} |\eta |^{\sigma } = \sum _{k=-\infty }^\infty |\eta |^{\sigma } \psi (2^{-k} |\eta |) = \sum _{k=-\infty }^\infty 2^{k \sigma } \Psi (2^{-k} |\eta |). \end{aligned}$$

We can then write

$$\begin{aligned} F(\eta )&{:}{=}&[\Lambda ^{s},|\eta |^\sigma ] f= \sum _k 2^{\sigma k} [\Lambda ^s, \Psi (2^{- k} \cdot )] f(\eta ) = \sum _k 2^{\sigma k} \int \frac{f(y) (\Psi (2^{-k}\eta )- \Psi (2^{-k}y))}{|\eta - y|^{2+ s}} dy. \end{aligned}$$

Introducing

$$\begin{aligned} F_k{:}{=} \int \frac{|f(y)| |\Psi (2^{-k}\eta )- \Psi (2^{-k}y)|}{|\eta - y|^{2+ s}} dy, \end{aligned}$$

we need to control

$$\begin{aligned} \Vert F\Vert _{L^2}^2= & {} \sum _l \int _{|\eta |\sim 2^l} |F(\eta )|^2 d\eta =\sum _l \int _{|\eta |\sim 2^l} \left| \sum _k 2^{s k} F_k(\eta )\right| ^2 d\eta \\= & {} \sum _l \int _{|\eta |\sim 2^l} \left| \sum _{k>l+10} 2^{s k} F_k(\eta )\right| ^2 d\eta +\sum _l \int _{|\eta |\sim 2^l} \left| \sum _{k=l-10}^{l+10} 2^{s k} F_k(\eta )\right| ^2 d\eta \\&+ \sum _l \int _{|\eta |\sim 2^l} \left| \sum _{k<l-10} 2^{s k} F_k(\eta )\right| ^2 d\eta =:K_1+K_2+K_3. \end{aligned}$$

We first consider the cases \(k>l+10\). One can estimate easily \(F_k\) point-wise. More specifically, since in the denominator of the expression for \(F_k\), we have \(|\eta -y|\ge \frac{1}{2} |\eta |\ge 2^{k-3}\),

$$\begin{aligned} |F_k(\eta )|\le 2^{-k(2+\sigma )} \int |f(y)||\Psi (2^{-k}y)| dy\le C 2^{-k(1+\sigma )} \Vert f\Vert _{L^2(|y| \sim 2^k)}, \end{aligned}$$

whence

$$\begin{aligned}&K_1 \le \sum _l 2^{2 l} \sum _{k_1>l+10} \sum _{k_2>l+10} 2^{k_1(s- 1-\sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k_1})} 2^{k_2(s- 1- \sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k_2})}\\&\quad \le \sum _{k_1} \sum _{k_2} 2^{2\min (k_1,k_2)}2^{k_1(s- 1- \sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k_1})} 2^{k_2(s- 1- \sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k_2})} \\&\quad \le C \sum _k 2^{2 k(s-\sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k})}^2 \le C \Vert |\eta |^{s- \sigma } f\Vert ^2. \end{aligned}$$

where we have used \(\sum _{l: l<\min (k_1,k_2)-10} 2^{2l} \le C 2^{2\min (k_1,k_2)}\).

For the case \(k<l-10\), we perform similar argument, since

$$\begin{aligned} |F_k(\eta )|\le C 2^{-l(2+\sigma )} 2^k \Vert f\Vert _{L^2(|y| \sim 2^k)}. \end{aligned}$$

So,

$$\begin{aligned}&K_3 \le C \sum _l 2^{2l} 2^{-2 l (2+ \sigma )} \sum _{k_1<l-10} \sum _{k_2<l-10} 2^{(s+ 1) k_1} \Vert f\Vert _{L^2(|y| \sim 2^{k_1})} 2^{(s+ 1) k_2} \Vert f\Vert _{L^2(|y| \sim 2^{k_2})} \\&\quad \le C \sum _{k_1} \sum _{k_2} 2^{(s+ 1) k_1} \Vert f\Vert _{L^2(|y| \sim 2^{k_1})} 2^{(s+ 1) k_2} \Vert f\Vert _{L^2(|y| \sim 2^{k_2})} 2^{-2 (1+ \sigma )\max (k_1,k_2)} \\&\quad \le C \sum _k 2^{2 k(s- \sigma )} \Vert f\Vert _{L^2(|y| \sim 2^{k})}^2 \le C \Vert |\eta |^{(s- \sigma )} f\Vert ^2. \end{aligned}$$

Finally, for the case \(|l-k|\le 10\), we use

$$\begin{aligned} |\Psi (2^{- k} \eta )- \Psi (2^{- k} y)| \le 2^{- k} |\eta - y| |\nabla \Psi (2^{- k} (\eta - y))| \le C 2^{- k} |\eta - y|, \end{aligned}$$

so that

$$\begin{aligned} |F_k(\eta )|\le C 2^{-k} \int _{|y| \sim 2^k} \frac{|f(y)|}{|\eta - y|^{1+ \sigma }} dy = C 2^{-k} |f| \chi _{|y| \sim 2^k} * \frac{1}{|\cdot |^{1+ \sigma }}. \end{aligned}$$

Thus, by Hölder’s

$$\begin{aligned}&K_2 \le C \sum _k \int _{|\eta |\sim 2^k} 2^{s k} \left| |f| \chi _{|y| \sim 2^k} * \frac{1}{|\cdot |^{1+ \sigma }}\right| ^2 d\eta \le C \sum _k 2^{s k} \Vert |f| \chi _{|y| \sim 2^k} * \frac{1}{|\cdot |^{1+ \sigma }}\Vert _{L^2(|\eta |\sim 2^k)}^2 \\&\quad \le C \sum _k 2^{2 k(s-\sigma )} \Vert |f| \chi _{|y| \sim 2^k} * \frac{1}{|\cdot |^{1+ \sigma }}\Vert _{L^{\frac{2}{\sigma }}(|\eta |\sim 2^k)}^2 \le C \sum _k 2^{2 k(s-\sigma )} \Vert f\Vert _{L^2(|\eta | \sim 2^k)}^2 \le C \Vert |\eta |^{s-\sigma } f\Vert ^2. \end{aligned}$$

where we have used the Hausdorf–Young’s inequality

$$\begin{aligned} \Vert f \chi _{|y| \sim 2^k} * \frac{1}{|\cdot |^{1+ \frac{\alpha }{2}}}\Vert _{L^{\frac{2}{\sigma }}} \le C \Vert \frac{1}{|\cdot |^{1+ \sigma }} \Vert _{L^{\frac{2}{1+ \sigma }, \infty }} \ \Vert f\Vert _{L^2(|\eta | \sim 2^k)}\le C \Vert f\Vert _{L^2(|\eta | \sim 2^k)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadadifard, F., Stefanov, A.G. On the Forced Surface Quasi-Geostrophic Equation: Existence of Steady States and Sharp Relaxation Rates. J. Math. Fluid Mech. 23, 24 (2021). https://doi.org/10.1007/s00021-021-00559-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00559-1

Mathematics Subject Classification

Keywords

Navigation