Skip to main content
Log in

Null Lagrangians in Cosserat Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In the framework of nonlinear theory of Cosserat elasticity, also called micropolar elasticity, we provide the complete characterization of null Lagrangians for three dimensional bodies as well as for shells. Using the Gibb’s rotation vector for description of the microrotation, this task is possible by an application of a theorem stated by Olver and Sivaloganathan in ‘the structure of null Lagrangians’ (Nonlinearity 1:389–398, 1988). A set of necessary and sufficient conditions is also provided for the elasticity tensors to correspond to a null Lagrangian in linearized micropolar theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, London (1978)

    MATH  Google Scholar 

  2. Aero, E.L., Kuvshinski, E.V.: Continuum theory of asymmetric elasticity. Microrotation effect. Solid State Phys. 5(9), 2591–2598 (1963) (in Russian) (English translation: Sov. Phys., Solid State 5 (1964), 1892–1899)

    Google Scholar 

  3. Aero, E.L., Kuvshinski, E.V.: Continuum theory of asymmetric elasticity. Equilibrium of an isotropic body. Sov. Phys., Solid State 6, 2141–2148 (1965)

    MathSciNet  Google Scholar 

  4. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    ADS  MATH  Google Scholar 

  5. Anderson, I.M., Duchamp, T.: On the existence of global variational principles. Am. J. Math. 102(5), 781–868 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    MATH  Google Scholar 

  7. Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41(2), 135–174 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Basak, N., Sharma, B.L.: Null Lagrangians in linear theories of micropolar type and few other generalizations of elasticity. Z. Angew. Math. Phys. (2020). https://doi.org/10.1007/s00033-020-01433-2

    Article  Google Scholar 

  9. Bessel-Hagen, E.: Über die Erhaltungssätze der Elektrodynamik. Math. Ann. 84, 258–276 (1921)

    MathSciNet  MATH  Google Scholar 

  10. Birsan, M., Neff, P.: Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations. Math. Mech. Solids 19(4), 376–397 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Carillo, S.: Null Lagrangians and surface interaction potentials in nonlinear elasticity. Ser. Adv. Math. Appl. Sci. 62, 9–18 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: Mathematical Elasticity, 1st edn. Theory of Shells, vol. III. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  13. Ciarlet, P.G., Gogu, R., Mardare, C.: A notion of polyconvex functions on a surface suggested by nonlinear shell theory. C. R. Acad. Sci. Paris, Sér. I 349, 1207–1211 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils, Paris (1909) (english translation by D. Delphenich, 2007), reprint 2009

    MATH  Google Scholar 

  15. Crampin, M., Saunders, D.J.: On null Lagrangians. Differ. Geom. Appl. 22(2), 131–146 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  17. Edelen, D.G.B.: The null set of the Euler-Lagrange operator. Arch. Ration. Mech. Anal. 11, 117–121 (1962)

    MathSciNet  MATH  Google Scholar 

  18. Edelen, D.G.B.: Aspects of variational arguments in the theory of elasticity: fact and folkloreInternational. J. Solids Struct. 17(8), 729–740 (1981)

    MATH  Google Scholar 

  19. Edelen, D.G.B., Lagoudas, D.C.: Null Lagrangians, admissible tractions, and finite element methods. Int. J. Solids Struct. 22(6), 659–672 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)

    MATH  Google Scholar 

  21. Ericksen, J.: Nilpotent energies in liquid crystal theory. Arch. Ration. Mech. Anal. 10, 189–196 (1962)

    MathSciNet  MATH  Google Scholar 

  22. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  23. Eringen, A.C.: Microcontinuum Field Theories. Foundations and Solids, vol. 1. Springer, New York (1999)

    MATH  Google Scholar 

  24. Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. Springer, New York (2004)

    MATH  Google Scholar 

  25. Grigore, D.R.: Variationally trivial Lagrangians and locally variational differential equations of arbitrary order. Differ. Geom. Appl. 10(1), 79–105 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Grioli, G.: Elasticita asimmetrica. Ann. Mat. Pura Appl. 50(1), 389–417 (1960)

    MathSciNet  MATH  Google Scholar 

  27. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  28. Itskov, M., Khiem, V.N.: A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers. Math. Mech. Solids 21(9), 1126–1137 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Iwaniec, T., Lutoborski, A.: Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125(1), 25–79 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Joumaa, H., Ostoja-Starzewski, M.: Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity. Proc. R. Soc. Lond. A 467(2134), 2896–2911 (2011)

    ADS  MATH  Google Scholar 

  31. Kovalev, V.A., Radaev, Y.N.: Forms of null Lagrangians in field theories of continuum mechanics. Mech. Solids 47, 137–154 (2012)

    ADS  Google Scholar 

  32. Lancia, M.R., Caffarelli, G.V., Podio-Guidugli, P.: Null Lagrangians in linear elasticity. Int. J. Math. Models Methods Appl. Sci. 05, 415–427 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Landers, A.W. Jr.: Invariant multiple integrals in the calculus of variations. In: Contributions to the Calculus of Variations. University of Chicago Press, Chicago (1942). Also: in Contributions to the Calculus of Variations, p. 175. University of Chicago Press (1938-1941)

    MATH  Google Scholar 

  34. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  35. Nikitin, E., Zubov, L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51(1), 1–22 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Noether, E.: Invariante Variationsprobleme. Gött. Nachr. 1918, 235–257 (1918), Math.-Phys. Klasse

    MATH  Google Scholar 

  37. Nowacki, W.: Theory of Asymmetric Elasticity. PWN, Warsaw (1986). ISBN: 0-08-027584-2.

    MATH  Google Scholar 

  38. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  39. Olver, P.J.: Conservation laws and null divergences. Math. Proc. Camb. Philos. Soc. 97, 52 (1985)

    MATH  Google Scholar 

  40. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    MATH  Google Scholar 

  41. Olver, P.J., Sivaloganathan, J.: The structure of null Lagrangians. Nonlinearity 1, 389–398 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Podio-Guidugli, P.: On null-Lagrangian energy and plate paradoxes. In: Altenbach, H., Chinchaladze, N., Kienzler, R., Muller, W. (eds.) Analysis of Shells, Plates, and Beams. Advanced Structured Materials, vol. 134. Springer, Cham (2020)

    Google Scholar 

  44. Rosakis, P., Simpson, H.C.: On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. J. Elast. 37, 113–137 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  46. Rund, H.: The Hamiltonian-Jacobi Theory in the Calculus of Variation, Its Role in Mathematics and Physics. Van Nostrand, Princeton (1966)

    MATH  Google Scholar 

  47. Saccomandi, G., Vitolo, R.: Null Lagrangians for nematic elastomers. J. Math. Sci. 136, 4470–4477 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Silhavy, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  49. Silhavy, M.: A variational approach to nonlinear electro-magneto-elasticity: convexity conditions and existence theorems. Math. Mech. Solids 23(6), 907–928 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Steigmann, D.J.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 497–506 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Yakov, I., Hehl, F.W.: The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation. J. Math. Phys. 54(4), 042903 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

BLS gratefully acknowledges the partial support of SERB MATRICS grant MTR/2017/000013. This work has been available free of peer review on the arXiv (2009.03490) since 09/09/2019. The authors thank the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Lal Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expansion of \(\omega \)

For the purpose of convenience of derivation, we assume that \(\det \mathbf{G}\ne 0\), let \(\nabla _{\theta }\boldsymbol{\chi }=\mathbf{T}=\mathbf{F} \mathbf{G}^{-1}\). With (3.2), then

$$ \begin{aligned} \omega &= \mathscr{A} \Omega _{v}+\frac{1}{2}\upepsilon _{ABC} \mathrm{B}_{Ai}F_{iM}dx_{M} {\wedge } dx_{B} {\wedge } dx_{C} \\ &+ \frac{1}{2}\upepsilon _{ijk}\mathrm{C}_{iA}dy_{j}{\wedge } dy_{k} { \wedge } (\mathbf{F}^{-1})_{Al}dy_{l}+\mathscr{D}dy_{1} {\wedge } dy_{2} {\wedge } dy_{3} \\ &+\frac{1}{2}\upepsilon _{ABC}\widetilde{\mathrm{B}}_{A\alpha }G_{ \alpha M}dx_{M} {\wedge } dx_{B} {\wedge } dx_{C}+\frac{1}{2} \upepsilon _{i\beta \gamma }\widetilde{\mathrm{C}}_{iA}d\theta _{\beta }{\wedge } d\theta _{\gamma }{\wedge } (\mathbf{G}^{-1})_{A\alpha }d \theta _{\alpha }+\widetilde{\mathscr{D}}d\theta _{1} {\wedge } d \theta _{2} {\wedge } d\theta _{3} \\ &+\frac{1}{2}\upepsilon _{\alpha \beta \gamma }\widehat{\mathrm{B}}_{ \alpha i}T_{i\alpha }d\theta _{\alpha }{\wedge } d\theta _{\beta }{\wedge } d\theta _{\gamma }+\frac{1}{2}\upepsilon _{ijk}\widehat{\mathrm{C}}_{i \alpha }dy_{j}{\wedge } dy_{k} {\wedge } (\mathbf{T}^{-1})_{\alpha l}dy_{l} \\ &+J_{\alpha j C}G_{\alpha A}F_{jB}dx_{A} {\wedge } dx_{B} {\wedge } dx_{C}, \end{aligned} $$
(A.1)

where

$$ \Omega _{v}:=dx_{1} {\wedge } dx_{2} {\wedge } dx_{3}. $$
(A.2)

Expanding further,

$$ \begin{aligned} \omega &= \mathscr{A} \Omega _{v} +\frac{1}{2}\upepsilon _{ABC} \upepsilon _{MBC}\mathrm{B}_{Ai}F_{iM}\Omega _{v}+\frac{1}{2} \upepsilon _{ijk}\mathrm{C}_{iA} (\mathbf{F}^{-1})_{Al} \upepsilon _{jkl}( \det \mathbf{F})\Omega _{v}+\mathscr{D}(\det \mathbf{F})\Omega _{v} \\ &+\frac{1}{2}\upepsilon _{ABC}\upepsilon _{MBC} \widetilde{\mathrm{B}}_{A\alpha }G_{\alpha M}\Omega _{v}+\frac{1}{2} \upepsilon _{i\beta \gamma }\widetilde{\mathrm{C}}_{iA} (\mathbf{G}^{-1})_{A \alpha } \upepsilon _{\alpha \beta \gamma }(\det \mathbf{G})\Omega _{v}+ \widetilde{\mathscr{D}}(\det \mathbf{G})\Omega _{v} \\ &+\frac{1}{2}\upepsilon _{\delta \beta \gamma }\upepsilon _{\alpha \beta \gamma }\widehat{\mathrm{B}}_{\delta i}T_{i \alpha }(\det \mathbf{G})\Omega _{v}+\frac{1}{2}\upepsilon _{ijk} \widehat{\mathrm{C}}_{i\alpha } (\mathbf{T}^{-1})_{\alpha l} \upepsilon _{jkl}(\det \mathbf{F})\Omega _{v} \\ &+\upepsilon _{ABC} J_{\alpha j C}G_{\alpha A}F_{jB}\Omega _{v}. \end{aligned} $$
(A.3)

Simplifying above expression, we find that

$$ \begin{aligned} \omega &= (\mathscr{A}+\mathrm{B}_{Ai}F_{iA}+\mathrm{C}_{iA} ( \mathbf{F}^{-1})_{Ai} (\det \mathbf{F})+\mathscr{D}(\det \mathbf{F}) \\ &+\widetilde{\mathrm{B}}_{A\alpha }G_{\alpha A}+ \widetilde{\mathrm{C}}_{\alpha A} (\mathbf{G}^{-1})_{A\alpha } ( \det \mathbf{G})+\widetilde{\mathscr{D}}(\det \mathbf{G}) \\ &+\widehat{\mathrm{B}}_{\alpha i}T_{i\alpha }\det \mathbf{G}+ \widehat{\mathrm{C}}_{i\alpha } (\mathbf{T}^{-1})_{\alpha i} (\det \mathbf{F}) +J_{\alpha j C}G_{\alpha A}F_{jB}\upepsilon _{CAB}) \Omega _{v}, \end{aligned} $$
(A.4)

which can be written as

$$ \begin{aligned} \omega &=(\mathscr{A}+\mathbf{B}^{\top }\cdot {\mathbf{F}}+ \mathbf{C}\cdot {\mathrm {cof~}} {\mathbf{F}}+\mathscr{D}\det {\mathbf{F}}+ \widetilde{\mathbf{B}}^{\top }\cdot {\mathbf{G}}+ \widetilde{\mathbf{C}}\cdot {\mathrm {cof~}} {\mathbf{G}}+ \widetilde{\mathscr{D}}\det {\mathbf{G}} \\ &+\widehat{\mathbf{B}}^{\top }\cdot {\mathbf{F}\mathbf{G}^{-1}}( \det \mathbf{G})+\widehat{\mathbf{C}}\cdot {\mathrm {cof~}}({\mathbf{F}}{ \mathbf{G}}^{-1})(\det \mathbf{G})+J_{\alpha j C}(.)_{\alpha j C}) \Omega _{v},\end{aligned} $$
(A.5)

where \((.)_{\alpha j C}=G_{\alpha A}F_{jB}\upepsilon _{CAB}=\mathbf{G}^{ \top }\boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top }\boldsymbol{e}_{j} \cdot \boldsymbol{e}_{C}\), \((.)=\boldsymbol{e}_{\alpha }\otimes \boldsymbol{e}_{j} \otimes (\mathbf{G}^{\top }\boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top }\boldsymbol{e}_{j})\). Replacing the inverse of \(\mathbf{G}\) by the cofactor, we get the form (3.3) which does not depend on the invertibility of \(\mathbf{G}\). The components of the cofactor of \(\mathbf{A}\) are given by

$$ (\mathrm {cof~}\mathbf{A})_{ij}=\frac{1}{2}\upepsilon _{imn}\upepsilon _{jpq} \mathrm{A}_{mp}\mathrm{A}_{nq}, $$
(A.6)

Appendix B: Expansion of \(d\zeta \)

The expression (3.5) leads to its exterior derivative

$$ \begin{aligned} d\zeta &=\frac{1}{2}\upepsilon _{ABC}d\mathrm{L}_{A}{\wedge } dx_{B}{ \wedge } dx_{C}+d\mathrm{K}_{iA}{\wedge } dy_{i} {\wedge } dx_{A}+ \frac{1}{2}\upepsilon _{ijk}d\mathrm{M}_{i} {\wedge } dy_{j} { \wedge } dy_{k} \\ &+d\widetilde{\mathrm{K}}_{\alpha A}\wedge d\theta _{\alpha }{\wedge } dx_{A} +\frac{1}{2}\upepsilon _{\alpha \beta \gamma }d \widetilde{\mathrm{M}}_{\alpha }\wedge d\theta _{\beta }{\wedge } d \theta _{\gamma }+d\mathrm{H}_{\alpha j}\wedge d\theta _{\alpha }{\wedge } dy_{j}, \end{aligned} $$
(B.1)

which can be expanded further given that \(\boldsymbol{L}, \boldsymbol{M}, \widetilde{\boldsymbol{M}}, \mathbf{K}, \widetilde{\mathbf{K}}, \mathbf{H}\) are functions of \((\boldsymbol{x},\boldsymbol{\chi },\boldsymbol{\theta })\) so that

$$ \begin{aligned} d\zeta &=\frac{1}{2}\upepsilon _{ABC}\mathrm{L}_{A,D}dx_{D} {\wedge } dx_{B}{\wedge } dx_{C}+\frac{1}{2}\upepsilon _{ABC}\mathrm{L}_{A,i}dy_{i} {\wedge } dx_{B}{\wedge } dx_{C} \\ &+\frac{1}{2}\upepsilon _{ABC} \mathrm{L}_{A,\alpha }d\theta _{\alpha }{\wedge } dx_{B}{\wedge } dx_{C} +\mathrm{K}_{iA,B}dx_{B}{\wedge } dy_{i} {\wedge } dx_{A} \\ &+ \mathrm{K}_{iA,j}dy_{j}{\wedge } dy_{i} {\wedge } dx_{A}+\mathrm{K}_{iA, \beta }d\theta _{\beta }{\wedge } dy_{i} {\wedge } dx_{A} \\ &+\frac{1}{2}\upepsilon _{ijk}\mathrm{M}_{i,A}dx_{A} {\wedge } dy_{j} {\wedge } dy_{k}+\frac{1}{2}\upepsilon _{ijk}\mathrm{M}_{i,l}dy_{l} { \wedge } dy_{j} {\wedge } dy_{k}+\frac{1}{2}\upepsilon _{ijk} \mathrm{M}_{i,\alpha }d\theta _{\alpha }{\wedge } dy_{j} {\wedge } dy_{k} \\ &+\widetilde{\mathrm{K}}_{\alpha A,B}dx_{B}{\wedge } d\theta _{\alpha }{\wedge } dx_{A}+\widetilde{\mathrm{K}}_{\alpha A,j}dy_{j}{ \wedge } d\theta _{\alpha }{\wedge } dx_{A}+\widetilde{\mathrm{K}}_{ \alpha A,\beta }d\theta _{\beta }{\wedge } d\theta _{\alpha }{\wedge } dx_{A} \\ &+\frac{1}{2}\upepsilon _{\alpha \beta \gamma } \widetilde{\mathrm{M}}_{\alpha ,A}dx_{A} {\wedge } d\theta _{\beta }{ \wedge } d\theta _{\gamma }+\frac{1}{2}\upepsilon _{\alpha \beta \gamma } \widetilde{\mathrm{M}}_{\alpha ,l}dy_{l} {\wedge } d\theta _{\beta }{ \wedge } d\theta _{\gamma }+\frac{1}{2}\upepsilon _{\alpha \beta \gamma } \widetilde{\mathrm{M}}_{\alpha ,\delta }d\theta _{\delta }{\wedge } d \theta _{\beta }{\wedge } d\theta _{\gamma }\\ &+\mathrm{H}_{\alpha j,A}dx_{A}\wedge d\theta _{\alpha }{\wedge } dy_{j}+ \mathrm{H}_{\alpha j,k}dy_{k}\wedge d\theta _{\alpha }{\wedge } dy_{j}+ \mathrm{H}_{\alpha j,\beta }d\theta _{\beta }\wedge d\theta _{\alpha }{ \wedge } dy_{j}. \end{aligned} $$
(B.2)

Collecting the terms accompanying the same exterior product of differentials, we get

$$ \begin{aligned} d\zeta &=\mathrm{L}_{A,A}\Omega _{v}+(\frac{1}{2}\upepsilon _{ABC} \mathrm{L}_{A,i}- \mathrm{K}_{iC,B})dy_{i} {\wedge }dx_{B} {\wedge } dx_{C} \\ &+(\mathrm{K}_{kA,j}+\frac{1}{2}\upepsilon _{ijk}\mathrm{M}_{i,A})dy_{j} {\wedge } dy_{k}\wedge dx_{A}+\mathrm{M}_{i,i}\Omega _{y}+ \widetilde{\mathrm{M}}_{\alpha ,\alpha }\Omega _{\theta }\\ &+(\frac{1}{2}\upepsilon _{ijk}\mathrm{M}_{i,\alpha }+\mathrm{H}_{ \alpha j,k})dy_{j}\wedge dy_{k}\wedge d\theta _{\alpha }+(\frac{1}{2} \upepsilon _{ABC}\mathrm{L}_{A,\alpha }-\widetilde{\mathrm{K}}_{ \alpha C,B})d\theta _{\alpha }{\wedge } dx_{B}{\wedge } dx_{C} \\ &+(\widetilde{\mathrm{K}}_{\gamma A,\beta }+\frac{1}{2}\upepsilon _{ \alpha \beta \gamma }\widetilde{\mathrm{M}}_{\alpha ,A})d\theta _{\beta }{\wedge } d\theta _{\gamma }\wedge dx_{A}+(\mathrm{K}_{jC,\alpha }- \widetilde{\mathrm{K}}_{\alpha C,j}+\mathrm{H}_{\alpha j,C})d \theta _{\alpha }{\wedge } dy_{j}\wedge dx_{C} \\ &+(\frac{1}{2}\upepsilon _{\alpha \beta \gamma } \widetilde{\mathrm{M}}_{\alpha ,i}+\mathrm{H}_{\gamma i,\beta })dy_{i}{ \wedge } d\theta _{\beta }\wedge d\theta _{\gamma }, \end{aligned} $$
(B.3)

where (A.2) is used.

Appendix C: Expansion of \(\nabla \cdot \boldsymbol{P}\)

The expression (3.14) is equivalent to

$$ \begin{aligned} \boldsymbol{P} &= \boldsymbol{L}+({\mathbf{F}}^{\top }\mathbf{K})^{ \times }+({\mathrm {cof~}}{\mathbf{F}})^{\top }\boldsymbol{M}+({\mathbf{G}}^{ \top }\widetilde{\mathbf{K}})^{\times } \\ &+({\mathrm {cof~}}{\mathbf{G}})^{\top }\widetilde{\boldsymbol{M}}+ \upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i} \boldsymbol{e}_{A}, \end{aligned} $$
(C.1)

as

$$\begin{aligned} \upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i} \boldsymbol{e}_{A} &=\boldsymbol{e}_{A}(\boldsymbol{e}_{A}\cdot ( \boldsymbol{e}_{B}\wedge \boldsymbol{e}_{C}))G_{\alpha B}F_{iC} \mathrm{H}_{\alpha i} \\ &=\boldsymbol{e}_{A}\otimes \boldsymbol{e}_{A}(\boldsymbol{e}_{B} \wedge \boldsymbol{e}_{C})G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i} \\ &=(G_{\alpha B}\boldsymbol{e}_{B}\wedge F_{iC}\boldsymbol{e}_{C}) \mathrm{H}_{\alpha i} \\ &=(\mathbf{G}^{\top }\boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top } \boldsymbol{e}_{j})\mathrm{H}_{\alpha j}=(\mathbf{G}^{\top } \boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top }\boldsymbol{e}_{j}) \mathbf{H}\cdot \boldsymbol{e}_{\alpha }\otimes \boldsymbol{e}_{j} \\ &=(\mathbf{G}^{\top }\boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top } \mathrm{H}_{\alpha j}\boldsymbol{e}_{j})=\mathbf{G}^{\top } \boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{\top }\mathbf{H}^{\top } \boldsymbol{e}_{\alpha }\\ &=\mathrm{axl}(\mathbf{F}^{\top }\mathbf{H}^{\top }\boldsymbol{e}_{\alpha }\otimes \mathbf{G}^{\top }\boldsymbol{e}_{\alpha }-\mathbf{G}^{ \top }\boldsymbol{e}_{\alpha }\otimes \mathbf{F}^{\top }\mathbf{H}^{ \top }\boldsymbol{e}_{\alpha }) \\ &=\mathrm{axl}(\mathbf{F}^{\top }\mathbf{H}^{\top }\mathbf{G} - \mathbf{G}^{\top }\mathbf{H}\mathbf{F}) \\ &=-\frac{1}{2}(\mathbf{F}^{\top }\mathbf{H}^{\top }\mathbf{G} - \mathbf{G}^{\top }\mathbf{H}\mathbf{F})^{\times } \end{aligned}$$
(C.2)

(recall \(\mathrm{axl}(\boldsymbol{b}\otimes \boldsymbol{c}-\boldsymbol{c} \otimes \boldsymbol{b})=\boldsymbol{c}\wedge \boldsymbol{b}\)). Thus, using the conditions stated in §3,

$$ \begin{aligned} \nabla \cdot \boldsymbol{P} &=\mathscr{A}+({\nabla _{y}}\boldsymbol{L})^{\top } \cdot {\mathbf{F}}+({\nabla _{\theta }}\boldsymbol{L})^{\top }\cdot { \mathbf{G}} \\ &+(\mathrm {Curl}_{x}\mathbf{K}\cdot {\mathbf{F}}-{\mathrm {cof~}}{\mathbf{F}}\cdot ({ \mathrm {Curl}_{y}}\mathbf{K}^{\top })^{\top })+\upepsilon _{ABC}{F}_{iB}\mathrm{K}_{iC, \alpha }G_{\alpha A} \\ &+{\mathrm {cof~}}{\mathbf{F}}\cdot (\nabla _{x}\boldsymbol{M}+(\nabla _{y}\boldsymbol{M})\mathbf{F}+(\nabla _{\theta }\boldsymbol{M})\mathbf{G}) \\ &+(\mathrm {Curl}_{x}\widetilde{\mathbf{K}}\cdot {\mathbf{G}}-{\mathrm {cof~}}{ \mathbf{G}}\cdot ({\mathrm {Curl}_{\theta }}\widetilde{\mathbf{K}}^{\top })^{\top })+ \upepsilon _{ABC}{G}_{\alpha B}\widetilde{\mathrm{K}}_{\alpha C,i}F_{iA} \\ &+({\mathrm {cof~}}{\mathbf{G}})\cdot (\nabla _{x}\widetilde{\boldsymbol{M}}+( \nabla _{y}\widetilde{\boldsymbol{M}})\mathbf{F}+(\nabla _{\theta }\widetilde{\boldsymbol{M}})\mathbf{G}) \\ &+\upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i,A}+ \upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i,\beta }G_{ \beta A} \\ &+\upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i,j}F_{jA}, \end{aligned} $$
(C.3)

i.e.,

$$ \begin{aligned} \nabla \cdot \boldsymbol{P} & =\mathscr{A}+\mathbf{B} \cdot {\mathbf{F}}+ \mathbf{C}\cdot {\mathrm {cof~}} {\mathbf{F}}+\mathscr{D}\det {\mathbf{F}}+ \widetilde{\mathbf{B}} \cdot {\mathbf{G}}+\widetilde{\mathbf{C}} \cdot {\mathrm {cof~}} {\mathbf{G}}+\widetilde{\mathscr{D}}\det {\mathbf{G}} \\ &+({\mathrm {cof~}}{\mathbf{F}})\mathbf{G}^{\top }\cdot (\nabla _{\theta }\boldsymbol{M})+(\nabla _{y}\widetilde{\boldsymbol{M}})^{\top }\cdot \mathbf{F}({\mathrm {cof~}}{\mathbf{G}})^{\top } \\ &+\upepsilon _{ABC}{F}_{iB}\mathrm{K}_{iC,\alpha }G_{\alpha A}+ \upepsilon _{ABC}{G}_{\alpha B}\widetilde{\mathrm{K}}_{\alpha C,i}F_{iA}+ \upepsilon _{ABC}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i,A} \\ &+\upepsilon _{ABC}G_{\beta A}G_{\alpha B}F_{iC}\mathrm{H}_{\alpha i, \beta }-\upepsilon _{ABC}F_{jA}F_{iB}G_{\alpha C}\mathrm{H}_{\alpha i,j}, \end{aligned} $$
(C.4)

i.e.,

$$ \begin{aligned} \nabla \cdot \boldsymbol{P} & =\mathscr{A}+\mathbf{B} \cdot {\mathbf{F}}+ \mathbf{C}\cdot {\mathrm {cof~}} {\mathbf{F}}+\mathscr{D}\det {\mathbf{F}}+ \widetilde{\mathbf{B}} \cdot {\mathbf{G}}+\widetilde{\mathbf{C}} \cdot {\mathrm {cof~}} {\mathbf{G}}+\widetilde{\mathscr{D}}\det {\mathbf{G}} \\ &+\widehat{\mathbf{B}}\cdot ({\mathrm {cof~}}\mathbf{G})\mathbf{F}^{\top }+ \widehat{\mathbf{C}}\cdot ({\mathrm {cof~}}{\mathbf{F}}){\mathbf{G}}^{\top } \\ &-({\mathrm {cof~}}{\mathbf{F}})\mathbf{G}^{\top }\cdot (\mathrm {Curl}_{y}\mathbf{H})^{ \top }+(\mathrm {Curl}_{\theta }\mathbf{H}^{\top })\cdot \mathbf{F}({\mathrm {cof~}}{ \mathbf{G}})^{\top } \\ &+\mathtt{J}\cdot \boldsymbol{e}_{\alpha }\otimes \boldsymbol{e}_{j} \otimes (\mathbf{G}^{\top }\boldsymbol{e}_{\alpha }\wedge \mathbf{F}^{ \top }\boldsymbol{e}_{j}) \\ &+\upepsilon _{ABC}{F}_{iB}\mathrm{K}_{iC,\alpha }G_{\alpha A}+ \upepsilon _{ABC}{G}_{\alpha B}\widetilde{\mathrm{K}}_{\alpha C,i}F_{iA} \\ &-\upepsilon _{ABC}(\mathrm{K}_{iC,\alpha }-\widetilde{\mathrm{K}}_{ \alpha C,i}+\mathrm{H}_{\alpha i,C})G_{\alpha A}F_{iB}+\upepsilon _{CAB}G_{ \alpha A}F_{iB}\mathrm{H}_{\alpha i,C} \\ &+\upepsilon _{ABC}G_{\alpha A}G_{\beta B}F_{iC}\mathrm{H}_{\beta i, \alpha }-\upepsilon _{ABC}F_{iA}F_{jB}G_{\alpha C}\mathrm{H}_{\alpha j,i}, \end{aligned} $$
(C.5)

so that finally,

$$ \begin{aligned} \nabla \cdot \boldsymbol{P} &=\mathscr{L}-({\mathrm {cof~}}{\mathbf{F}})\mathbf{G}^{ \top }\cdot (\mathrm {Curl}_{y}\mathbf{H})^{\top }+(\mathrm {Curl}_{\theta }\mathbf{H}^{\top }) \cdot \mathbf{F}({\mathrm {cof~}}{\mathbf{G}})^{\top } \\ &+\upepsilon _{\alpha \beta \gamma }(\mathrm {cof~}\mathbf{G})_{\gamma C}F_{iC}H^{ \top }_{i\beta ,\alpha }-\upepsilon _{ijk}(\mathrm {cof~}\mathbf{F})_{kC}G_{ \alpha C}\mathrm{H}_{\alpha j,i} \\ &=\mathscr{L}. \end{aligned} $$
(C.6)

Note that

$$\begin{aligned} \upepsilon _{ABC}\mathrm{A}_{i A}\mathrm{A}_{j B}B_{ij C}&= \upepsilon _{ABC}\mathrm{A}_{i A}\mathrm{A}_{j B}\delta _{CD}B_{ij D} \\ &=\upepsilon _{ABC}\mathrm{A}_{i A}\mathrm{A}_{j B}A^{\top }_{Ck }( \mathbf{A}^{-\top })_{kD}B_{ij D} \\ &=\upepsilon _{ijk}(\mathrm {cof~}\mathbf{A})_{kD}{B}_{ijD}. \end{aligned}$$
(C.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.L., Basak, N. Null Lagrangians in Cosserat Elasticity. J Elast 143, 337–358 (2021). https://doi.org/10.1007/s10659-021-09818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09818-8

Keywords

Mathematics Subject Classification

Navigation