Skip to main content
Log in

A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts, say L and R, such that \({\vert {L} \vert }\) and \({\vert {R} \vert }\) differ by at most 1 and the number of arcs from R to L is at most k. This problem is known to be NP-hard even when \(k = 0\). We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that Minimum Directed Bisection admits a sub-exponential time fixed-parameter tractable algorithm on semicomplete digraphs. We also show that Minimum Directed Bisection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use \((n,k,k^2)\)-splitters, which, to the best of our knowledge, have never been used before in the design of kernels. We also prove that Minimum Directed Bisection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data/Material

Not Applicable.

References

  1. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I, pp. 49–58 (2009)

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.Z.: Digraphs—Theory, Algorithms and Applications. Springer, Berlin (2002)

    MATH  Google Scholar 

  4. Barbero, F., Paul, C., Pilipczuk, M.: Exploring the complexity of layout parameters in tournaments and semicomplete digraphs. ACM Trans. Algorithms 14(3), 38:1–38:31 (2018)

    Article  MathSciNet  Google Scholar 

  5. Barbero, F., Paul, C., Pilipczuk, M.: Strong immersion is a well-quasi-ordering for semicomplete digraphs. J. Graph Theory 90(4), 484–496 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77(6), 1071–1078 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bui, T.N., Peck, A.: Partitioning planar graphs. SIAM J. Comput. 21(2), 203–215 (1992)

    Article  MathSciNet  Google Scholar 

  8. Camion, P.: Chemins et circuits hamiltoniens des graphes complets. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 249(21), 2151–2152 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Chudnovsky, M., Seymour, P.D.: A well-quasi-order for tournaments. J. Comb. Theory Ser. B 101(1), 47–53 (2011)

    Article  MathSciNet  Google Scholar 

  10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  11. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed-parameter tractable. SIAM J. Comput. 48(2), 417–450 (2019)

    Article  MathSciNet  Google Scholar 

  12. Díaz, J., Mertzios, G.B.: Minimum bisection is NP-hard on unit disk graphs. In: Mathematical Foundations of Computer Science 2014—39th International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II, pp. 251–262 (2014)

  13. Diestel, R.: Graph Theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer (2012)

  14. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010)

    Article  MathSciNet  Google Scholar 

  15. Feige, U.: Faster fast (feedback arc set in tournaments). CoRR arXiv:abs/0911.5094 (2009)

  16. Feige, U., Yahalom, O.: On the complexity of finding balanced oneway cuts. Inf. Process. Lett. 87(1), 1–5 (2003)

    Article  MathSciNet  Google Scholar 

  17. Feldmann, A.E., Widmayer, P.: An o(n\({}^{\text{4 }}\)) time algorithm to compute the bisection width of solid grid graphs. Algorithmica 71(1), 181–200 (2015)

    Article  MathSciNet  Google Scholar 

  18. Fomin, F.V., Pilipczuk, M.: On width measures and topological problems on semi-complete digraphs. J. Comb. Theory Ser. B 138, 78–165 (2019)

    Article  MathSciNet  Google Scholar 

  19. Fradkin, A.: Forbidden structures and algorithms in graphs and digraphs. PhD thesis, Princeton University (2011)

  20. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  Google Scholar 

  21. Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approximation schemes for MAX-BISECTION on planar and geometric graphs. SIAM J. Comput. 35(1), 110–119 (2005)

    Article  MathSciNet  Google Scholar 

  22. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15–17, 2010, Proceedings, Part I, pp. 3–14 (2010)

  23. Kim, I.: On containment relations in directed graphs. PhD thesis, Princeton University (2013)

  24. Kim, I., Seymour, P.D.: Tournament minors. J. Comb. Theory Ser. B 112, 138–153 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lampis, M., Kaouri, G., Mitsou, V.: On the algorithmic effectiveness of digraph decompositions and complexity measures. Discrete Optim. 8(1), 129–138 (2011)

    Article  MathSciNet  Google Scholar 

  26. Macgregor, R.M.: On partitioning a graph: a theoretical and empirical study. PhD thesis, University of California, Berkeley (1979)

  27. Madathil, J., Sharma, R., Zehavi, M.: A sub-exponential FPT algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In: Rossmanith, P., Heggernes, P., Katoen, J.-P. (es) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, volume 138 of LIPIcs, pp. 28:1–28:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

  28. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)

    Article  MathSciNet  Google Scholar 

  29. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995)

  30. Panolan, F., Saurabh, S., Zehavi, M.: Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6–9, 2019, pp. 1035–1054 (2019)

  31. Papadimitriou, C.H., Sideri, M.: The bisection width of grid graphs. Math. Syst. Theory 29(2), 97–110 (1996)

    Article  MathSciNet  Google Scholar 

  32. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 255–264 (2008)

  33. Rédei, L.: Ein kombinatorischer satz. Satz. Acta Litt. Szeged 7, 39–43 (1934)

    MATH  Google Scholar 

  34. van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized complexity of computing graph bisections. In Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science—39th International Workshop, WG 2013, Lübeck, Germany, June 19–21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pp. 76–87. Springer (2013)

Download references

Funding

This project has received funding from the Israel Science Foundation under grant no. 1176/18 and the United States–Israel Binational Science Foundation (BSF) under grant no. 2018302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakrishnan Madathil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code Availability

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this work appeared in the proceedings of the the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS), 2019 [27]. This work was done while the first and second authors were at the The Institute of Mathematical Sciences, HBNI, Chennai, India.

Appendix: Proof of Observation 3.3

Appendix: Proof of Observation 3.3

It is easy to see that Maximum Directed Bisection belongs to the class NP. Now, to see that the problem is NP-hard on DAGs, we consider the Directed Max-Cut problem on DAGs. Here, the input consists of a DAG G and an integer k, and the task is to determine whether V(G) can be partitioned into two parts X and Y such that \({\vert {A(Y,X)} \vert } \ge k\). Now, given an instance (Gk) of Directed Max-Cut where G is a DAG on n vertices, we construct an instance (Dk) of Minimum Directed Bisection as follows. The DAG D is constructed from G by simply adding n new isolated vertices to G. That is, \(V(D) = V(G) \cup Z\) where Z is a set of vertices such that \(V(G) \cap Z =\emptyset\), and \({\vert {Z} \vert }=n\), and \(A(D)=A(G)\). Now, if (XY) is a cut of G of size at least k, then define a bisection (LR) of D as follows. Take \(L=X \cup Z_1\) and \(R=Y \cup Z_2\), where \(Z_1\) is any subset of Z of size \(n-{\vert {X} \vert }\) and \(Z_2=Z \setminus Z_1\). Then, note that \({\vert {L} \vert }={\vert {X} \vert }+(n-{\vert {X} \vert })=n\). Moreover, we have \({\vert {Y} \vert }=n-{\vert {X} \vert }\) and \({\vert {Z_2} \vert }={\vert {X} \vert }\), and therefore \({\vert {R} \vert }={\vert {Y} \vert }+{\vert {Z_2} \vert }=(n-{\vert {X} \vert })+{\vert {X} \vert }=n\). Thus, (LR) is indeed a bisection of D and \({\vert {A(R,L)} \vert }={\vert {A(Y,X)} \vert } \ge k\). Conversely, if \((L',R')\) is a bisection of D of size at least k, then because Z is a set of isolated vertices, we get that \((L'\setminus Z, R'\setminus Z)\) is a cut of G such that \({\vert {A(R'\setminus Z, L'\setminus Z)} \vert } \ge k\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madathil, J., Sharma, R. & Zehavi, M. A Sub-exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs. Algorithmica 83, 1861–1884 (2021). https://doi.org/10.1007/s00453-021-00806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00806-x

Keywords

Navigation