Skip to main content
Log in

Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper establishes the global uniform-in-time boundedness of solutions to the following Keller-Segel system with signal-dependent diffusion and chemotaxis

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\nabla \cdot (\gamma (v)\nabla u-u\phi (v)\nabla v),\quad & x \in \Omega , t>0, \\ \displaystyle { v_{t}=d\Delta v- v+u},\quad & x\in \Omega , t>0 \\ \end{array}\displaystyle \right . $$

in a bounded domain \(\Omega \subset \mathbb{R}^{N}(N\leq 4)\) with smooth boundary, where the density-dependent motility functions \(\gamma (v)\) and \(\phi (v)\) denote the diffusive and chemotactic coefficients, respectively. The model was originally proposed by Keller and Segel in (J. Theor. Biol. 30:225–234, 1970) to describe the aggregation phase of Dictyostelium discoideum cells, where the two motility functions satisfy a proportional relation \(\phi (v)=(\alpha -1)\gamma '(v)\) with \(\alpha >0\) denoting the ratio of effective body length (i.e. distance between receptors) to the step size. The major technical difficulty in the analysis is the possible degeneracy of diffusion. In this work, we show that if \(\gamma (v)>0\) and \(\phi (v)>0\) are smooth on \([0,\infty )\) and satisfy

$$ \inf _{v\geq 0} \frac{d\gamma (v)}{v\phi (v)(v\phi (v)+d-\gamma (v))_{+}}>\frac{N}{2}, $$

then the above Keller-Segel system subject to Neumann boundary conditions admits classical solutions uniformly bounded in time. The main idea of proving our results is the estimates of a weighted functional \(\int _{\Omega }u^{p}v^{-q}dx\) for \(p>\frac{N}{2}\) by choosing a suitable exponent \(p\) depending on the unknown \(v\), by which we are able to derive a uniform \(L^{\infty }\)-norm of \(v\) and hence rule out the diffusion degeneracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J., Yoon, C.: Global well-posedness and stability of constant equilibria in parabolic- elliptic chemotaxis systems without gradient sensing. Nonlinearity 32, 1327–1351 (2019)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992. Teubner-Texte Math., vol. 133, pp. 9–126. Teubner, Stuttgart (1993)

    Chapter  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  4. Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347–359 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Burger, M., Laurençot, P., Trescases, A.: Delayed blow-up for chemotaxis models with local sensing (2020). arXiv:2005.02734v2

  6. Desvillettes, L., Kim, Y.J., Trescases, A., Yoon, C.: A logarithmic chemotaxis model featuring global existence and aggregation. Nonlinear Anal., Real World Appl. 50, 562–582 (2019)

    Article  MathSciNet  Google Scholar 

  7. Fu, X., Tang, L., Liu, C., Huang, J.D., Hwa, T., Lenz, P.: Stripe formation in bacterial system with density-suppressed motility. Phys. Rev. Lett. 108, 198102 (2012)

    Article  Google Scholar 

  8. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  Google Scholar 

  9. Fujie, K., Jiang, J.: Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities (2020). arXiv:2001.01288

  10. Fujie, K., Jiang, J.: Global existence for a kinetic model of pattern formation with density-suppressed motilities. J. Differ. Equ. 269, 5338–5378 (2020)

    Article  MathSciNet  Google Scholar 

  11. Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 28, 2417–2450 (2016)

    Article  MathSciNet  Google Scholar 

  12. Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. Nonlinearity 31, 1639–1672 (2018)

    Article  MathSciNet  Google Scholar 

  13. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Jin, H., Wang, Z.A.: Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. Eur. J. Appl. Math. (2020). https://doi.org/10.1017/S0956792520000248

    Article  Google Scholar 

  15. Jin, H., Wang, Z.A.: Critical mass on the Keller-Segel system with signal-dependent motility. Proc. Am. Math. Soc. 148, 4855–4873 (2020)

    Article  MathSciNet  Google Scholar 

  16. Jin, H., Wang, Z.A.: The Keller-Segel system with logistic growth and signal-dependent motility. Discrete Contin. Dyn. Syst., Ser. B (2020). https://doi.org/10.3934/dcdsb.2020218

    Article  Google Scholar 

  17. Jin, H., Kim, Y., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

    Article  MathSciNet  Google Scholar 

  18. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1970)

    Article  Google Scholar 

  19. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  20. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 26, 235–248 (1971)

    Article  Google Scholar 

  21. Kowalczyk, R., Szymańska, Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    Article  MathSciNet  Google Scholar 

  22. Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 39, 394–404 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lankeit, E., Lankeit, J.: Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption. Nonlinear Anal., Real World Appl. 46, 421–445 (2019)

    Article  MathSciNet  Google Scholar 

  24. Li, J., Wang, Z.A.: Traveling waves on density-suppressed motility models (2020). arXiv:2006.12851

  25. Liu, C., Fu, X., Liu, L., Ren, X., Chau, C.K.L., Li, S., Zeng, H., Chen, G., Tang, L., Lenz, P., Cui, X., Huang, W., Hwa, T., Huang, J.: Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011)

    Article  Google Scholar 

  26. Lui, R., Ninomiya, H.: Traveling wave solutions for a bacteria system with densi-suppressed motility. Discrete Contin. Dyn. Syst., Ser. B 24, 931–940 (2018)

    MATH  Google Scholar 

  27. Ma, M., Peng, R., Wang, Z.A.: Stationary and non-stationary patterns of the density- suppressed motility model. Physica D 402, 132259, 13 pages (2020)

    Article  MathSciNet  Google Scholar 

  28. Nagai, T., Senba, T.: Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal. 30, 3837–3842 (1997)

    Article  MathSciNet  Google Scholar 

  29. Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8, 145–156 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  31. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., Ser. III 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  32. Smith-Roberge, J., Iron, D., Kolokolnikov, T.: Pattern formation in bacterial colonies with density-dependent diffusion. Eur. J. Appl. Math. 30, 196–218 (2019)

    Article  MathSciNet  Google Scholar 

  33. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal., Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Wang, Z.A.: Mathematics of traveling waves in chemotaxis. Discrete Contin. Dyn. Syst., Ser. B 18, 601–641 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Z.A.: On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states (2020). arXiv:2005.04415

  36. Wang, J., Wang, M.: Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth. J. Math. Phys. 60, 011507 (2019)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  Google Scholar 

  38. Yoon, C., Kim, Y.J.: Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zheng, J.: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source. J. Differ. Equ. 259, 120–140 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable comments and suggestions which greatly improved the exposition of this paper. The research of Z.A. Wang was supported by the Hong Kong RGC GRF grant No. 15303019 (Project ID P0030816) and an internal grant no. UAH0 from the Hong Kong Polytechnic University. The work of J. Zheng was partially supported by Shandong Provincial Science Foundation for Outstanding Youth (No. ZR2018JL005), the National Natural Science Foundation of China (No. 11601215) and Project funded by China Postdoctoral Science Foundation (No. 2019M650927, 2019T120168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashan Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZA., Zheng, J. Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities. Acta Appl Math 171, 25 (2021). https://doi.org/10.1007/s10440-021-00392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00392-8

Keywords

Mathematics Subject Classification (2020)

Navigation