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Abstract 
The study presents thermo-mechanical analysis of functionally graded (FG) rotating disc whose material properties, 

namely, Young’s modulus, density and coefficient of thermal expansion in radial direction are tailored from inner to 

outer radius using power law form. The disc is considered to be under the influence of internal pressure, centrifugal body 

force and thermal loading of the form linear as well as quadratic. Response of FG disc under linear and quadratic 

temperature profile subjected to internal pressure as well as centrifugal body force is analysed. An exact solution for 

stress in radial and tangential directions, under mechanical and thermal loading is presented. Numerical solutions for 

stresses under internal pressure with uniform thermal loading are obtained using finite element method and its comparison 

with analytical results is presented graphically. Results for radial displacement, radial stress and tangential stress are 

depicted graphically and their interpretation has been discussed. 

 

Keywords- Functionally graded rotating disc, Stresses, Young’s modulus, Coefficient of thermal expansion, Internal 

pressure. 

 

 

 

1. Introduction 
Functionally graded materials (FGMs) are an advanced class of composite materials with 

heterogeneous composition of metal and ceramic over the volume of body. Functionally graded 

materials are made up of metal matrix, containing smooth distribution of ceramic in form of 

particulates. They are widely used in manufacturing of engineering components, i.e. in air-craft 

engines, pressure vessels, steam and gas turbine rotors, turbo generators, internal combustion 

engines, automotive parts such as brake discs and drums, drive shafts, cylinder blocks and pistons 

etc. Many researchers have taken keen interest in analysis of such innovative material due to its 

wide area of application. Sayman and Arman (2006) carried out an elastic-plastic stress analysis in 

a thermoplastic composite disc under a steady state temperature distribution. Kordkheili and 

Naghdabadi (2007) presented a solution for thermo-elasticity in hollow and solid rotating 

functionally graded disks. Exact solutions for stresses in functionally graded annular discs rotating 

at a constant angular velocity under temperature loading (Bayat et al., 2009; Çallıoğlu, 2011; 

Çallıoğlu et al., 2011; You et al., 2007) are also found in literature. Bektaş and Akça, (2012) 

conducted analytical and numerical analysis of FG disc using power law functions. Thawait et al. 

(2017), used finite element approach and provided linear elastic solution for FG disk with varying 

thickness. The analysis of this advanced class of materials presented the fact that FGMs have 

advantage over composite materials as they reduce the magnitude of stresses and strains and also 
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provide thermal resistance, as compared to composites (Sahni and Sharma, 2017). Analysis of 

elastic and creep deformations in FG annular rotating discs and cylinders has also been reported by 

researchers in the literature. (Sahni and Sahni, 2014, 2015; Sahni et al., 2017). Mehta et al. (2019a) 

investigated thermal stresses in FG rotating disc with different material gradation cases. Recently, 

researchers (Paul and Sahni, 2019; Habib et al., 2019; Mehta et al., 2019b) derived solution for FG 

cylinder with nonlinearly varying material properties using power series method and FE analysis, 

respectively.  

 

In our study, an analytical and numerical analysis for rotating FG disc under internal pressure and 

varying thermal load in complete linear and quadratic form is presented. 

 

2. Mathematical Formulation of Stress Analysis 

The governing differential equation for an axisymmetric rotating FG disc is given as (Çallıoğlu et 

al., 2011), 

 

  2 2 0r

r

d
r r r

dr



                                                                                                 (1) 

 

where, σr, σθ, ρ(r) and ω are radial stress, tangential stress, density and angular speed respectively. 

The solution is derived using stress function S(r), that satisfies the equation of equilibrium given 

by eq. (1) and the relation between stresses and stress function is given as, 
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The strain-displacement equation (You et al., 2007) is given as, 
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where, εr, εθ and u are radial strain, tangential strain and displacement, respectively.  

 

The compatibility condition obtained by eliminating u from above set of eq. (3) is given as,  

 

r

d
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
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Using Hooke’s law (You et al., 2007), we get the equations for plane stress given as, 
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where, Y(r), α(r), T(r) and ν are Young’s Modulus, coefficient of thermal expansion, temperature, 

Poisson’s ratio, respectively. Using eq. (2), (5) and (6) in eq. (4), we obtain, 
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Let internal (ri) and external (ro) radii of disc be 20 cm and 50 cm, respectively. The material 

properties of FG disc varying in radial direction are defined as, 
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where, t1= 0.5194, t2= - 0.4873, t3= 0.5236 are material gradient parameters. Also, Yo=150 GPa, 

ρ
o
=5.6 g/cm3and αo = 23×10-6 1/℃ are Young’s modulus, density and coefficient of thermal 

expansion at external radius, respectively. Figure 1 shows that decrease in Young’s modulus and 

increase in coefficient of thermal expansion facilitates decrease in density. Thermal loading T(r) 

in radial direction of FG disc is defined as, 
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                                                      (11) 

 

where, Tref, Tri
 and Tro

 are reference, inner and outer temperature, respectively. Also, k1 and k2 are 

temperature gradient parameters, respectively. Here, as depicted in Figure 2, temperature 

distribution is of complete linear form when k1= 0 and k2= 1. On considering k1= 1 and k2= 2, a 

complete quadratic thermal profile can be obtained. In our study, both increasing and decreasing 

behaviour of thermal profile is considered. Also, FG disc is under internal pressure given as below: 
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    and 
r i i r o o

r q r q                                                                                                    (12) 

 

Analysis for thermal loading in radial direction for FG rotating disc is conducted for below cases: 

 

Case 1: k1= 0 and k2= 1. Using eq. (8)-(11) in eq. (7), we get the stress function S(r) as, 
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where, C1 and C2 are arbitrary constants. The other constants C3, C4 and C5 are defined as, 
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From equation (2), radial stress σr can be obtained as, 
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The arbitrary constants C1 and C2 are calculated using equation (12) given as, 
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From equation (2), tangential stress σθ can be obtained as, 
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Figure 1. Material properties of FG disc Figure 2. Temperature distribution for FG disc 

 

 

Case 2: k1= 1 and k2= 2. Considering the quadratic temperature profile, radial stress can be 

obtained as, 
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Here, C1 and C2 are constants of integration obtained from boundary condition eq. (12) given as, 
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The other constants C3, C4, C5 and C6 are given as, 
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Tangential stress under quadratic thermal loading can be calculated as, 
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From eq. (3) and (6), strains in radial and tangential directions, respectively for linear and quadratic 

cases of thermal loading can be obtained. In this paper, radial displacement using the same set of 

equations is presented graphically. 

 

3. Numerical Computation Scheme 

The governing differential equation (7) coupled with eq. (8) - (11) is solved numerically using finite 

element method (FEM). The method is implemented using FEM based solver COMSOL 

Multiphysics (5.4). Considering an axisymmetric geometry of FG disc, discretization of domain is 

handled using triangular elements of finer size with user-controlled meshing. Thermomechanical 

analysis of the problem is conducted using solid mechanics module and appropriately defined 

boundary conditions at inner and outer radius of disc, as given by eq. (12). The model developed 

is then solved using PARSDISO solver which is a linear direct solver, capable of handling sparse 

matrices and providing solution of sparse matrices of AX b  form. Results are obtained by 

applying parametric sweep over appropriate boundary conditions and angular speed for FG rotating 

disc. The obtained numerical results for radial stress, tangential stress and radial displacement under 

mechanical and thermal loading follow stiff convergence criterion of 10-5. In order to obtain 

accurate results, grid independence test is conducted for grids G1, G2 and G3 consisting of 61746, 

762414 and 94438 number of elements, respectively. Figures 3 and 4 depicts radial and tangential 
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stress subjected to internal pressure of q
i
 = 50 MPa and increasing thermal loading from inner to 

outer radius for FG disc rotating at 350 rad/s. It can be noted from grid independence test, that 

radial stress varies only with a difference in values at third decimal place whereas values of 

tangential stress do not vary at all. Thus, grid G3 has been considered as an appropriate grid for 

present numerical results. From Figures 3 and 4, it can be observed that numerical results for radial 

stress and tangential stress are in close agreement with the obtained analytical results. A comparison 

of some of the obtained exact and numerical results are also shown in the section ahead. 

 

The effect of internal pressure, thermal loading and centrifugal body force on radial displacement 

and stress in radial as well as tangential directions, for FG disc, is presented graphically. The values 

used for the parameters are referred from (Çallıoğlu et al., 2011) in CGS unit system. For increasing 

thermal loading from inner to outer radius, Tref = 0 ℃, Tri
 = 0 ℃, Tro

 = 500 ℃ and for decreasing 

thermal loading profile, Tref = 0 ℃, Tri
 = 500 ℃, Tro

 = 250 ℃ are temperature parameters. Also, 

internal pressure q
i
 = 50 MPa, angular velocity ω = 350 rad/s and ν = 0.3 are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Radial stress under linearly increasing 

thermal profile, 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
= 𝑇𝑟𝑒𝑓 = 0 𝑜𝐶, 

𝑇𝑟𝑜
= 500 𝑜𝐶 and 𝜔 = 350 rad/s 

Figure 4. Tangential stress under linearly 

increasing thermal profile, qi = 50 MPa, Tri
=

Tref = 0 oC, Tro
= 500 oC and ω = 350 rad/s 

 

 

3.1 Analytical Results 
Figures 5 – 18 presents analytical results for radial stress, tangential stress and radial displacement. 

Figure 5 depicts radial stress under internal pressure of q
i
 = 50, 100 MPa, for FG and homogeneous 

disc. It can be seen from Figure 5 that radial stress is highly compressive at inner radius and tends 

to decrease in magnitude towards outer radius. From Figure 5, it is evident that radial stress in FG 

disc has considerably low magnitude than in homogeneous disc. It can be seen from Figure 6, 

tangential stress under internal pressure, is significantly high at inner radius. This behaviour of 

tangential stress can be interpreted as the effect of internal pressure at inner radius due to which 

inner diameter of disc increases causing bursting like effect at inner radial points. Hence, when 

internal pressure is increased from 50 MPa to 100 MPa, it causes further increase in the magnitude 
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of tangential stress at inner radial points. Figure 7 presents displacement in disc under internal 

pressure. It can be seen that displacement in FG disc is lower than in the homogeneous disc and it 

decreases from inner to outer radius of the disc. Results for increasing thermal loading from inner 

to outer radius of FG disc under internal pressure and centrifugal body force are presented in 

Figures 8 – 10. Figure 8 represents radial stress in FG disc rotating with angular velocity 

ω = 350 rad/s under internal pressure of q
i
 = 50 MPa, subjected to linearly and quadratically 

increasing thermal loading. It is seen that radial stress at inner radius is compressive and has high 

magnitude but towards the outer radius, it becomes tensile. Also, radial stress under the influence 

of thermal loading is on the higher side but with introduction of internal pressure, it significantly 

decreases along the radius of the disc. Importantly, it can be seen that under linear profile radial 

stress has high magnitude of values whereas under quadratic thermal loading, it decreases. In case 

of tangential stress as observed from Figure 9, an elastic behaviour is observed under linear and 

quadratic thermal loading but in linear case, at outer radius, it becomes compressive. Also, under 

the same loading conditions, displacement as observed from Figure 10 increases from inner to outer 

radius. Interestingly, the values of displacement are lower at inner radial points under quadratic 

thermal loading as compared to linear case but ends on higher side at outer radial points. Figures 

11 – 13 presents result for decreasing thermal loading from inner to outer radius. The radial stress 

as observed from Figure 11, decreases over the radius of disc when compared to increasing thermal 

loading. Also, it is interesting to note that radial stress under quadratic thermal loading is on the 

higher side of magnitude in comparison to linear thermal loading. It is again noted that presence of 

internal pressure decreases the magnitude of radial stress over the radius of disc. In case of 

tangential stress, Figure 12 shows that overall magnitude decreases significantly in case of 

decreasing thermal loading profile. Tangential stress under linearly decreasing thermal loading has 

high magnitude than quadratically decreasing thermal loading at outer radius but low value at inner 

radius. Figure 13 shows that under quadratic thermal loading, displacement decreases from inner 

to outer radius in highly non-linear form as compared to linear thermal loading, in which 

displacement increases from inner to outer radius. Also, in presence of internal pressure, magnitude 

of displacement decreases considerably in both form of thermal loading. The effect of body force 

on behaviour of FG disc under internal pressure is shown in Figures 14 – 18. It can be seen from 

Figure 14, radial stress and tangential stress in FG disc subjected to only centrifugal body force 

increase in magnitude as the angular velocity increases. The magnitude of radial stress with higher 

value tends to shift towards outer radius, due to increase in angular velocity. In case of 

displacement, Figure 15 shows that it is tensile at inner radius but becomes compressive towards 

outer radius. With increase in angular velocity, displacement along the radius of FG disc increases. 

The effect of angular velocity on FG disc under internal pressure is depicted in Figures 16 – 18. It 

can be seen from Figure 16, effect of body force ρ(r)ω2r on radial stress under internal pressure 

changes the behaviour from compressive to tensile at some radial points, with shift in its magnitude 

towards the middle region of the disc. As observed from Figure 17, tangential stress has tensile 

behaviour and has significant increase in its magnitude when the angular velocity increases. In case 

of displacement, it can be seen from Figure 18 that magnitude of radial displacement increases 

along the radius of FG disc. 
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Figure 5. Radial stress under 𝑞𝑖 = 50, 100 MPa Figure 6. Tangential stress under 𝑞𝑖 = 50, 100 

MPa 

 
  

Figure 7. Displacement under 𝑞𝑖 = 50, 100 MPa 

 

Figure 8. Radial stress: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

𝑇𝑟𝑒𝑓 = 0 𝑜𝐶, 𝑇𝑟𝑜
= 500 𝑜𝐶 and 𝜔 = 350 rad/s 

  

Figure 9. Tangential stress: qi = 50 MPa, Tri
=

Tref = 0 oC, Tro
= 500 oC and ω = 350 rad/s 

Figure 10. Displacement: qi = 50 MPa, Tri
=

Tref = 0 oC, Tro
= 500 oC and ω = 350 rad/s 
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Figure 11. Radial stress: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

500 𝑜𝐶, 𝑇𝑟𝑒𝑓 = 0 𝑜𝐶, 𝑇𝑟𝑜
= 250 𝑜𝐶 and 𝜔 = 350 

rad/s 

Figure 12. Tangential stress: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

500 𝑜𝐶, 𝑇𝑟𝑒𝑓 = 0 𝑜𝐶, 𝑇𝑟𝑜
= 250 𝑜𝐶 and 𝜔 = 350 

rad/s 

 
  

Figure 13. Displacement: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

500 𝑜𝐶, 𝑇𝑟𝑒𝑓 = 0 𝑜𝐶, 𝑇𝑟𝑜
= 250 𝑜𝐶 and 𝜔 = 350 

rad/s 

Figure 14. Effect of angular velocity on radial and 

tangential stresses 

  

Figure 15. Effect of angular velocity on 

displacement 
Figure 16. Effect of angular velocity on radial 

stress under 𝑞𝑖 = 50 𝑀𝑃𝑎 
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Figure 17. Effect of angular velocity on tangential 

stress under 𝑞𝑖 = 50 𝑀𝑃𝑎 
Figure 18. Effect of angular velocity on 

displacement under 𝑞𝑖 = 50 𝑀𝑃𝑎 
 

 

3.2 Comparison of Analytical and Numerical Results 
Figures 19 – 22 presents comparison between numerical and analytical results for radial stress and 

tangential stress in FG disc. Figure 19 presents comparison of exact and numerical solution for 

radial stress under the influence of internal pressure in FG disc. It is clearly seen that both exact 

and FEM result are in close agreement, throughout radius of disc. Also, in case of tangential stress, 

it can be seen from Figure 20 that exact and FEM solutions are consistent with each other. 

Comparison for an exact and a numerical solution of radial stress under internal pressure and body 

force with uniform temperature distribution can be seen from Figure 21. It is observed that over the 

radius of FG disc, both the solutions are in close agreement except around the centre of the disc. 

For instance, at r =30 cm FEM provides the value of σr = 298.1365 MPa and an exact solution has 

a value of 295.135 MPa. For tangential stress, both solutions are in agreement as seen in Figure 22. 

 

 

 

  

Figure 19. Radial stress under 𝑞𝑖 = 50 𝑀𝑃𝑎 Figure 20. Tangential stress under 𝑞𝑖 = 50 𝑀𝑃𝑎 
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Figure 21. Radial stress: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

𝑇𝑟𝑒𝑓 = 𝑇𝑟𝑜
= 0 𝑜𝐶, and 𝜔 = 350 rad/s 

Figure 22. Tangential stress: 𝑞𝑖 = 50 MPa, 𝑇𝑟𝑖
=

𝑇𝑟𝑒𝑓 = 𝑇𝑟𝑜
= 0 𝑜𝐶, and 𝜔 = 350 rad/s 

 
 

4. Conclusion 
In our study, analysis of FG disc subjected internal pressure, thermal loading and body force is 

conducted. The material properties are varying in power law form from inner to outer radius of 

cylinder. The effect of varying material properties, effect of thermal loading when the disc is under 

the influence of pressure and effect of body force is examined. The study leads to some significant 

observations mentioned as below: 

 

(i) Radial stress in functionally graded disc under the influence of internal pressure, is lower 

in magnitude when compared with the disc with homogeneous material properties. 

 

(ii) Under the effect of increasing linear thermal loading from inner to outer radius, 

functionally graded rotating disc subjected to internal pressure has significantly higher 

magnitude of stress than in the case of quadratic thermal loading but under decreasing 

thermal distribution from inner to outer radius of the disc, radial stress in quadratic case is 

higher in magnitude as compared to linear case of thermal distribution. 

 

(iii) Thermo-mechanical radial stress in FG rotating disc under the effect of internal pressure is 

lower in magnitude as compared to FG disc free from internal pressure.  

 

(iv) Radial stress under the influence of internal pressure increases in magnitude when FG disc 

is under the effect of centrifugal body force. The increase in angular velocity of FG disc, 

further increases the magnitude of radial stress. 

 

(v) Tangential stress under the influence of thermomechanical loading has higher magnitude 

than radial stress at inner radial points which is caused due to the effect of internal pressure. 

 

(vi) Tangential stress under the effect of quadratically increasing thermal distribution, is lower 

at inner radius and higher at outer radius, as compared to linearly increasing thermal 

distribution case. The behaviour is reversed when thermal loading decreases from inner to 

outer radius of FG disc. 
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(vii) Displacement in FG disc under internal pressure decreases from inner to outer radius but 

with increase in angular velocity, the magnitude of displacement increases. 

 

(viii) Displacement under the effect of increasing thermal loading, internal pressure and body 

force increases from inner to outer radius of FG disc for both - linear as well quadratic 

thermal profile. Under decreasing thermal profile, displacement increases from inner to 

outer radius in linear thermal profile whereas it decreases non-linearly under quadratic 

thermal profile case. Also, in the presence of internal pressure, displacement under the 

influence of thermomechanical loading decreases in its magnitude. 
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