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Abstract 

Analytical expressions are used frequently for the determination and analysis of plasma parameters. Instead of relying 

on analytical expressions, the proposed method uses regression techniques supplemented with experimental data for the 

selected parameters (plasma potential). In the machine learning domain, this is equivalent to the creation of the training 

data set, building and training the model, and authenticating the result over a range of desired physical parameters. An 

experimental dataset is built using two axially movable Triple Langmuir Probe (TLPs) which measure the electron 

temperature, electron density, and electric potential of a plasma. The presented work is a first step towards developing 

an inclusive model with detailed kinetic simulations capable of characterizing the HELicon Experiment for Negative ion 

source (HELEN-I) with a single driver. Plasma potential is measured at different axial locations (z) by keeping pressure 

fixed at 6 mTorr.  

 

Keywords- Plasma potential, Regression, Axial position, Ion source, HELEN-I. 

 

 

 

1. Introduction 
The ion source is an essential part of the equipment used for fusion applications. Ion sources use 

gases such as hydrogen, argon for producing high-density ions (Bhattacharyya, 2009). Langmuir 

probes are routinely used in many plasma devices for research and industrial applications, to 

provide measurements of electron temperature, density and electric fields, and saturation current, 

among other parameters (Godyak and Alexandrovich, 2015). Plasma parameters such as electron 

temperature, electron density and plasma potential play an essential role in the characterization of 

plasma. The Langmuir probe is generally used for the direct measurement of the parameters 

described above (Hopkins, 1995). Langmuir probes are considered the most suitable tool for the 

determination of these parameters due to simplicity in measuring local values. It is used in RF 
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plasma sources that are subject to RF pickup, which can significantly distort the I-V characteristic 

and give erroneous results (Merlino, 2007). Unfortunately, the analytical method cannot 

approximate the interaction between physical parameters such as magnetic field, plasma drift, or 

the geometry of the ion source. 

 

Therefore, in the light of recent advances in the area of machine learning (ML), multivariate 

regression techniques can play an essential role for accurate and fast estimation of plasma source 

parameters and can efficiently model Langmuir probe behavior for unique experimental setups and 

laboratory environments. Gidon et al. (2019) presented a machine learning-based technique for 

Real-time diagnostics of cold atmospheric plasma (CAP) sources which successfully determined 

the rotational and vibrational temperatures from Optical Emission Spectroscopy using linear 

regression, k-means clustering and Gaussian basis regression techniques. Mesbah and Graves 

(2019), presented supervised and unsupervised learning for transforming modelling and simulation, 

real-time monitoring, and control of Non-Equilibrium Plasma (NEP). Witman et al. (2019) 

demonstrated the deep reinforced learning method for the regulation of thermal properties of 

atmospheric pressure plasma jets on substrates having different thermal and electrical 

characteristics. Gidon et al. (2019) shows the application of convolutional neural networks (CNNs) 

to reconstruct the 2-D plasma profile based on the data acquired through diagnostics and also 

discuss the use of recurrent neural networks for predicting the plasma disruptions. Kates-Harbeck 

et al. (2019) presented a method based on deep learning for forecasting disruptions using the 

reinforced neural network which uses gradient backpropagation for learning. Kim et al. (2004) filed 

an empirical technique for constructing predictive models of plasma etch processes using a 

combination of generalised regression neural network (GRNN) and a random generator (RG). Ho 

et al. (2019) outlined a Gaussian process regression (GPR)  for the validation of plasma turbulent 

transport model. Rea et al. (2018) investigates the prediction of disruption for two different plasma 

devices using random forest regression technique. 

 

The literature survey for this study suggested that several researchers successfully utilized machine 

learning techniques (mainly artificial neural network techniques) for the prediction of different 

plasma properties and characteristics. However, none of the researchers has employed machine 

learning tools for predicting the axial variation of plasma potential.  

 

So, the presented work considers HELicon Experiment for Negative ion source (HELEN-I) with a 

single driver which is a helicon plasma source developed at Institute for Plasma Research (IPR) for 

producing very high-density negative hydrogen plasma. The HELEN-I is meant for carrying out 

studies to establish large-sized, multi-driver negative helicon plasma source. The conceptual design 

of the device and operational parameters have been discussed in the previously reported work. In 

the following, we assess the feasibility of using linear regression to predict the axial variation of 

plasma potential. The proposed methodology uses experimental data measured using TLP to 

construct a linear regression model using machine learning techniques. Polynomial Linear 

Regression (PLR) and regression using Gaussian Basis Function (GBF) are used for the estimation 

of axial variation of plasma potential. The reasons behind the selection of PLR and GBF-based 

regression technique are substantiated in section 3.0. Results obtained with these two approaches 

are then presented. We conclude with a summary of our findings and concluding remarks. 

 

2. Experimental Setup and Training Data Sets 
The functional description of HELEN-I  experimental setup is demonstrated in Pandey et al. (2017). 

HELEN-I is used as a test setup to validate the proposed machine learning-based technique for 
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plasma parameter estimation since the manual characterization of HELEN-I plasma source with 

hydrogen gas has already been completed (Pandey et al., 2019). The HELEN-I is operated for 

different input settings to generate negative hydrogen plasma. The RF power is adjusted from 

between 400 𝑊𝑎𝑡𝑡 to 950 𝑊𝑎𝑡𝑡 by keeping pressure settings at 6 𝑚𝑇𝑜𝑟𝑟 , 7.5 𝑚𝑇𝑜𝑟𝑟   and 30 𝑚𝑇𝑜𝑟𝑟 , 

respectively. 

 

Further, the plasma density is enhanced by varying the magnetic fields (B field: 40 𝐺𝑎𝑢𝑠𝑠, 55 

𝐺𝑎𝑢𝑠𝑠  and 86 𝐺𝑎𝑢𝑠𝑠). The plasma density is measured at different locations using Two axially 

movable Triple Langmuir probes (TLPs) through the plasma potential in the plasma chamber. The 

two probes are inserted through the L-shaped bottom flange, and the other probes are inserted from 

the top of the source for axial measurements. The probes, made from a tungsten wire, are used for 

axial and radial measurements in the expansion chamber and have three identical tips. The axial 

profile is obtained through the rotation of the probe. Training data set is built using the measurement 

taken by TLP. TLP is used to measure the plasma potential at several axial locations ranging from 

z= 0 cm to 30 cm.  

 

The 70% of the acquired experimental data is utilised for training the regression models using 

different ML algorithms, and the remaining data (30%) is used for testing purpose. The axial 

location and plasma potentials are regarded as two independent experimentally measured datasets 

while applying the regression techniques. Though as a matter of fact, the axial variation of potential 

is correlated with other input parameters such as magnetic field, pressure, geometry, RF power. 

However, in this work, only the plasma potential and the axial locations are taken into account. 

Therefore axial position is treated as an independent variable. 

 

3. Methodology 
Regression analysis is generally used for establishing the relationship between a set of independent 

variables and a dependent variable. Numerous types of regression models can be utilised for fitting 

the experimental data. This selection of regression technique often depends on the nature of data 

available for the dependent variable. Based on which regression model is selected, which gives the 

best fit (Schneider et al., 2010). 

 

Plasma potential variation is recorded at different axial locations (z) using TLP. Total 42 such 

measurements for axial change of plasma potential are recorded. Figure 1 shows the axial variation 

of plasma potential above 700 W RF power and 6 mTorr pressure. Figure 1 clearly shows the non-

axial linearity in the variation. 

 

There are several regression techniques available for estimation and prediction (Palmer and 

Connell, 2009). The number of independent variables, type of dependent variables and shape of the 

regression line is three motivating factors behind the selection of regression techniques. In the view 

of nonlinearity present in the plasma potential, linear regression techniques which can efficiently 

deal with non-linearity become the obvious choice for implementation. Lichtenberg and Simsek 

(2017) states that “There was no simple model that predicted well in all data sets, but in nearly all 

data sets, there was at least one simple model that predicted well”. Hence, linear regression 

methods such as simple linear regression, polynomial regression and linear regression with non-

linear basis combination of basis function, are considered for the present work.  

 

A comparative study of the linear regression methods mentioned above is given in Table 1. 
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Figure 1. The scattered plasma potential (Volts) values at z=0 to 22 cm locations 

 

 
Table 1. Comparison of different linear regression techniques 

 

Regression 

Technique 

Criteria of Selection Advantages Disadvantages 

Simple Linear 
Regression 

(Schneider et al., 
2010) 

 There must be a linear 

relationship between 

independent and dependent 
variables 

 Best suited for single 

independent and dependent 

variables. 

 Works well small data sets 

(10-20) samples. 

 Easy to implement 

 Less number of parameters to tune 

 No hyper-parameters to tune. 

 Linear Regression is very 

sensitive to Outliers 

 Only suitable for linear 

functions  

Polynomial 

Linear 
Regression 

(Ostertagová, 

2012) 

 Suitable for the non-linear 

relationship between 

independent and dependent 

variables. 

 Best suited for single 

independent and single 

independent variables but can 
also be used for multiple 

dependent and independent 

variables. 

 Can work well with small and 

large datasets. 

 Gives the improvised 

approximation of the relationship 

between the dependent and 

independent variable with respect 
to simple linear regression. 

 Fits a wide range of curvature. 

 Suitable for broad ranges of 

functions. 

 No hyperparameters to tune 

 Suffer overfitting for higher-

order polynomial. 

 The presence of one or two 

outliers in the data can 
seriously affect the results of 

the nonlinear analysis. 

 fewer model validation tools 

for the detection of outliers 

Gaussian Basis 

Function 

Regression 
(Bishop, 2006) 

 Suitable for the non-linear 

relationship between 

independent and dependent 
variables 

 Can work well with the small 

and large data set. 

 Best suited for single or 

multiple independent and 

dependent variables. 

 Gives the best approximation of the 

relationship between the dependent 

and independent variable. 

 With a combination of higher 

dimensional Gaussian basis 
function can fit any curvature or 

function 

 Regularization overcomes the 

overfitting and cross-validation are 

not required. 

 More hyperparameters to 

tune. 

 High computational cost. 
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The attributes tabulated in Table 1 and the nature of the experimental data set shown in Figure 1 

motivates the researchers to adopt polynomial linear regression and Gaussian basis function-based 

regression for modelling. Applying regression by the linear combination of basis functions may 

prove a promising candidate for modelling (Kondor, 2004).  

 

In this work, polynomial regression and gaussian regression techniques used in machine learning 

field are implemented and tested for the prediction of axial variation of plasma potential (Bishop, 

2006). 

 

3.1 Polynomial Linear Regression 
Polynomial Regression is very similar to multiple regression but at the same time instead of having 

different variables higher-order power of the same variable is used as shown in equation 1. Simple 

linear regression given in (1) can be used for the fitting the experimental data set, i.e. axial positions 

( )z , plasma potential ( )pV and  is the error term. 

 
0 1 2

0 1 2 ............. k

p kV z z z z                                                                                                             (1) 

 

When the regression model given by (1) is written as 
pV Z    where z  is the coefficient 

matrix given by 

1 2
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1 2
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1
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i i ik

z z z

z z z

z z z
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  
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 and 
1 1ˆ ( ' ) PZ Z Z V   . Considering the nature of 

data set given in Figure 1, finding out the order of best fit polynomial may need several trials and 

increase in the order of polynomial may change the value of linear, quadratic or cubic parameters. 

So, it is preferred to have a situation where an increase in the order of polynomial should not change 

the values of parameters and can be achieved by using a system of polynomials given by (2) 

 

0 0 1 1 2 2( ) ( ) ( ) ....... ( )
iP i i i k k i iV P z P z P z P z           , i=1, 2, 3…….n                                   (2) 

 

Though, there are several ways to construct a system of polynomials given by Gram-Schmidt 

method (Ramesha and Raja, 2011) that is used to create a discrete orthogonal polynomial system 

given in (2) Where ( )u iP z  is the 
thu  order polynomial defined as 

 

1

( ) ( ) 0, ; , 0,1,2.......
n

r i s i

i

P z P z r s r s k


                                                                                              (3) 

 

0( ) 1iP z  . In the context of Z - Matrix, in this case, can be given by (4) 
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Since X-matrix has orthogonal columns, so 
'Z Z  becomes 
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The ordinary least square estimator is 
' 1 'ˆ ( ) pZ Z Z V   so ˆ

j ( 1,2,3..... )j n is given by  
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Since 0( )iP z  is a polynomial of order zero and has unit value so 0
ˆ

pV   where 
PV   is the mean 

value of plasma potential. The residual sum of the square is 
2

Re

0

ˆ( ) ( )
i i

k

s P P

i

SS k V V


   where 
iPV

is the observed value of plasma potential and ˆ
iPV is the estimated value of plasma potential. The 

regression sum of square computed as 

2

1
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does not depend on other parameters in the 

model.  

 

3.2 Linear Regression using Gaussian Basis Function 

Polynomial linear regression model given by (1) is a linear function of input variables ( iz ) and thus 

forces significant limitation on the model. Therefore, the model presented in the previous section 

can be further investigated by operating with fixed non-linear function given by (7) 
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1

0

( , ) ( )
M

P j j

j

V z z  




                                                                                                                   (7) 

 

where ( )j z is the basis function, index 0,1...... 1j M  , M  is the total number of parameters, 

0 1( ........ )T

M     and 
0 1( .......... )T

M    . In this paper, we have considered Gaussian basis 

function as given in (8)  

 
2

2

( )
( ) exp

2

j

j

z
z

s




  
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  
                                                                                                                  (8) 

 

j controls the locations of the basis functions in the input space, and the parameter s is the width 

or spatial space. 

 

The experimental dataset is fitted by minimizing the sum of the squares error function. A dataset 

of axial position is considered as input 1 2{ , ........ }nZ z z z with the corresponding target plasma 

potential values. Target values are grouped in the column vector. The z  values appear as 

conditioning variables. The data points are drawn independently and shown in the Figure 1. Sum 

of the squared error function is defined by (9) 

 

 
2

1

1
( ) ( )

2

N
T

D n n

n

E z z  


                                                                                                               (9) 

 

A regularization term 
1

( )
2

T

wE    is introduced to control over-fitting, so the total error 

function to be minimized is computed as (10) 

 

 
2

1

1
( ) ( )

2 2

N
T T

n n

n

E z z

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

                                                                                                (10) 

 

( )wE  is also known as weight decay. It has the advantage that the error function remains a 

quadratic function of α. A tuning parameter (λ) controls the strength of the penalty term. When λ = 

0, ridge regression equals least squares regression. If λ = ∞, all coefficients are shrunk to zero. The 

ideal penalty is, therefore, somewhere in between 0 and ∞. It shrinks the parameters; therefore, it 

is mostly used to prevent multicollinearity, and it also reduces the model complexity by coefficient 

shrinkage. 

 

4. Result and Discussion 

4.1 Measurement of Plasma Parameters 
In the present study, hydrogen helicon plasma is generated using the Nagoya type-III antenna. The 

helicon hydrogen gas plasma is obtained by operating Nagoya type-III antenna at RF power ≥ 

400W. A sudden jump after 400W can be seen in Figure 2 which shows that a stable helicon plasma 
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mode exists after 700 W. For the presented study, the experimental dataset obtained at 6 mTorr 

pressure and B field 86 Gauss is considered for developing a regression model for axial plasma 

potential variations.  

 

 

 
 

Figure 2. Variation of ion saturation current with increasing RF power (Watts) at 6-mTorr pressure 

 

 

4.2 Polynomial Regression Model 
Several orders of the polynomial by keeping the axial position as the independent variable are 

trained with the training data set. Considering the non-linearity and randomness in the experimental 

data shown in Figure 1, we started regression analysis by initiating with 5th order polynomial. The 

1-D independent variable is transformed into a 2-D vector of the 5th - 8th order. Figure 3 shows the 

results of the polynomial regression. It can be observed that lower-order polynomials show the poor 

curve fitting, e.g. 5th order polynomial curve fitting shows an abrupt jump towards the end of the 

plot which may give arbitrary value when operated with new data set. Moreover, the nature of curve 

fitting improves when the order of the polynomial is further increased. The experimental data set 

is used for training and testing the prediction results. The accuracy of results is measured by root 

mean squared error and the R2 value or coefficient of determination. The R squared value measures 

the model performance relative to a simple mean of the target values. 

 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1284-1299, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.095 

1292 

 
 

Figure 3. Prediction of axial variation of plasma potential using the polynomial regression model 

 

 
2 3 4 5 6 7 82.994 0.0001 2.383 1.475 0.398 0.062 0.006 0.000 0.000 0.000pV z z z z z z z z           (11) 

 

The careful observation of results shown in Table 2 suggests that 8th order polynomial given in (11) 

fairly presents the axial plasma potential variation for HELEN-I. 

 

 
Table 2. Model performance comparison for the polynomials of degree 5th to 8th 

 

Degree of 
Polynomial 

Model Performance for Training Set Model Performance for Test Set 

RMSE R2 RMSE R2 

5 0.701 0.573 0.787 0.545 

6 0.544 0.743 0.950 0.338 

7 0.488 0.793 0.756 0.581 

8 0.454 0.820 0.659 0.682 

 

 

We may notice that the coefficient values for z6, z7 and z8 are converging to small values (≈0) 

suggests the saturation of learning for the model. Model performance shows the significant 

difference between the RMSE values for the training set and test set. Similar inconsistency in the 

results can also be observed through the training and validation curve shown in Figure 4. 
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Figure 4. The variance scores for the polynomials of the degree (5th -8th)  

 

 

The diverging nature of the validation curve shows high variance value between the training and 

test data set. This necessitates the implementation of Gaussian basis function-based linear 

regression. The detailed discussion on the results obtained by implementing GBF linear regression 

is given in the next section. 

 

4.3 Gaussian Basis Function Model 
Based on the literature reviewed, scaled Gaussian basis functions can be the promising candidate 

for prediction of axial variation of plasma potentials. Multiple numbers of Gaussian basis functions 

are summed up, which efficiently fit the nature of the experimental dataset. For the available 

experimental data set of axial position and plasma potentials, 15, 20, 30 and 40-dimensional 

Gaussian basis functions or base estimators are introduced into the linear model given in (8). Figure 

5 shows the prediction results of the GBF regression model. 

 

It is clear from the Figure 5 that the introduction of basis functions into the linear model given in 

(7) makes the model much more flexible and accurate, but it also can very quickly lead to over-

fitting. Careful investigation of Figure 5 towards the connection between 2 data points seems to be 

linear, which is contrary to the inherent nature of GBF. The reason for linearity present between 

two data points can be visualised by plotting the coefficients ( ) given in (9) and the basis function. 

Figure 6 shows the amplitude for 15, 20, 30 and 40-dimensional basis functions concerning the 

respective prediction plots. Here, coefficients ( )  are attaining substantial values which simply 

mean typical over-fitting behaviour, and it occurs when basis function overlap: the coefficients of 

adjacent basis functions cancel each other. In other words, some predicted values are exceeding the 
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actual values which need to be brought down.  The problem arose due to the cancellation of adjacent 

coefficients is removed by keeping tuning parameter (λ=2) to penalise large values of the model 

parameters known as regularisation given in (10) as ( )wE  .  

 

 
 

Figure 5. Prediction of axial plasma potential variation using GBF regression model 
 

 

Figure 7 clearly shows the reduction in coefficient values with increasing dimensionality. The 

coefficient values typically lie between -1 to 1. The comparison of Figure 6 and 7 show that the 

coefficients ( ) are significantly reduced from the range ±1011 to ±1. Due to the hefty penalty 

applied the sharp edges presented in the predicted values of Vp shown in Figure 6 are reduced hence 

resulted in overall improvised predicted VP values as shown in Figure 7. 

 

After adding the penalty to the sum of the squared error function given in (9), the prediction results 

for the same range of Gaussian basis dimension values show the smoothening of between two 

consecutive data points as shown in Figure 8. The regularized GBF regressor model produces an 

excellent fit to the experimental data of the axial plasma potential variation shown in Figure 8. 

 

The model performance is estimated through the RMSE and R2 values. The model performance in 

terms of RMSE and R2 for 15, 20, 30, and 40 dimension GBF regressor is given in Table 3. 
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Figure 6. The coefficients of adjacent Gaussian basis functions (of Base Estimator = 15, 20, 30, 40) for the 

prediction plots 

 

 

RMSE and R2 value for the training set for the polynomial of degree (5th -8th ) is less than the RMSE 

value for the test set. However, with an increasing degree of the polynomial trade-off between the 

bias and variance increases (e.g. degree 6). On the other hand, results shown in Figure 9 shows a 

bright improvement in the performance parameters, where RMSE score is gradually decreasing, 

and R2 scores are increasing form the training and the test set, respectively. Moreover, this pattern 

is not observed for the polynomial regression model. 

 

Hence, the GBF regressor model (40-Dimensional) can fairly represent the axial plasma potential 

variation and can be used for predicting the plasma potential without conducting real-time 

experiments on the experimental setup.  
 

Figure 9 shows the graphical model of performance measured through performance parameters 

(RMSE and R2 values) for the polynomial regression model and regularized GBF regression model.  
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Figure 7. The regularised coefficients of adjacent Gaussian basis functions (Base Estimator = 15,20,30,40) 

for the prediction plots 

 

 

 

 
 

Figure 8. Prediction of axial plasma potential variation using regularised GBF regression model 
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Table 3. Model performance comparison for regularised Gaussian Basis Regression Model  
 

Base Estimators Model Performance for Training Set Model Performance for Test Set 

RMSE R2 RMSE R2 

15 0.2589 0.9451 0.3600 0.9013 

20 0.2313 0.9562 0.2988 0.9320 

30 0.1250 0.9872 0.2222 0.9624 

40 0.0292 0.9993 0.1645 0.9793 

 

 

 
 

Figure 9. The performance of polynomial linear regression model for 5,6,7, and 8 degrees of polynomials 

(5,6,7, and 8) and GBF regression model performance for 15, 20, 30, and 40 dimension GBF regressor 

 

 

5. Conclusion and Future Work 
The present paper explores the application of linear regression-based machine learning technique 

for predicting axial variation of plasma potential. Further, this paper establishes that the machine 

learning-based regression techniques may be proved as a promising tool in diagnostics for plasma 

device/ion sources. 

 

 The paper successfully employs polynomial linear regression and linear regression using 

Gaussian basis function for predicting the axial variation of plasma potential. 

 

 Based on the analysis carried out in this study, the Gaussian basis regressor model turns out to 

be a better candidate for predicting the plasma potential as compared to the polynomial 

regressor model. 

 

 The methodology presented in the paper can be further utilized for predicting other plasma 

parameters such as ion saturation current, plasma temperature and plasma density in future.  
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