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Abstract  

For any single-objective mathematical programming model, rank-based optimal solutions are computationally difficult 

to find compared to an optimal solution to the same single-objective mathematical programming model. In this paper, 

several methods have been presented to find these rank-based optimal solutions and based on them a new rank-based 

solution method (RBSM) is outlined to identify non-dominated points set of a multi-objective integer programming 

model. Each method is illustrated by a numerical example, and for each approach, we have discussed its limitations, 

advantages and computational complexity. 

 

Keywords- Exact and approximate methods for ranked-optimal solutions; K-ranked optimal solutions; Multi-objective 

integer programming model; Non-dominated point set; Rank-based solution method. 

 

 

 

1. Introduction 
Although, single-objective mathematical programming models and their solution approaches have 

made a lot of contributions in solving many industrial and real-life optimization problems in 

operations research and other related areas of study, yet many of these situations are better 

represented by a multi-objective model, and therefore a need for solution approaches for these 

multi-objective models is ever increasing. An optimal solution for single-objective models has 

played a significant role in complex decision-making situations. In the case of multi-objective 

integer programming (MOIP) problems, instead of finding a single optimal solution, one is required 

to find the non-dominated points set, which is a central problem of interest. The optimal solution 

for a single-objective mathematical programming model is relatively easy, as the optimality of the 
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solution is defined by some known conditions. These conditions help us to identify the optimal 

solution. However, the same is not true for the 𝐾𝑡ℎ  ranked optimal solutions, 𝐾 ≥ 2.  
 

The proposed rank-based solution method (RBSM) to identify the non-dominated point set of a 

given multi-objective integer programming model uses 𝐾𝑡ℎ ranked optimal solutions, 𝐾 ≥ 2. 

Thus, justifying a need for developing methods that can determine K-ranked optimal solutions for 

a single-objective mathematical programming model. In this paper, several methods have been 

discussed that can find these K-ranked optimal solutions and later a rank-based solution method 

has been developed for identifying the non-dominated point set of the given multi-objective integer 

programming model. 

 

This paper has been organized into 9 Sections. Preliminaries are given in Section 2. Rank-based 

solution methods are discussed in Section 3. Literature concerning methods for determination of 

non-dominated point set has been reviewed in Section 4. The proposed rank-based solution method 

has been developed in Section 5. Some interesting observations about the ranked-optimal solutions 

have been stated in Section 6. The rank-based solution method for a multi-objective programming 

model is discussed in Section 7. Numerical illustrations, for the rank-based solution method 

discussed in this paper, are presented in Section 8. Finally, concluding remarks and future directions 

are presented in Section 9. 

 

2. Preliminaries 
The mathematical formulation of a single and multi-objective integer programming model is 

described as (1) and (2): 

 

𝑀𝑖𝑛𝑍(𝑥)                                                                                                                                                                                       (1) 

𝑀𝑖𝑛𝑍(𝑥) = (𝑍1(𝑥), 𝑍2(𝑥), … , 𝑍𝑝(𝑥))                                                                                                                         (2) 

Here (1) and (2) are subject to x ∈ X, where X= {Ax ≤ b; x ≥ 0 and integer}, which is the set of all 

feasible solution of (1) and (2) and Z1(x), Z2(x),...,Zp(x) are the p linear objective functions for the 

multi-objective problem. The elements of matrix A are the coefficients of constraints, and b is a 

vector of non-negative integer values. X is called decision space and the image of X (Y = Z(x)) is 

called criterion or objective space. When x ∈ {0,1}n the problem is called a multi-objective 

combinatorial optimization problem. For this paper, the following notations are used. 

 

Notation 2.1. The Kth best optimal solution with respect to the objective s is denoted by 𝑍𝑠
𝐾 , 𝐾 =

1, 2, … 𝑎𝑟𝑒 𝑟𝑎𝑛𝑘𝑒𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑠 = 1, 2, … , 𝑝. 

 

Notation 2.2. The value of the lth objective function, at the point 𝑍𝑠
𝐾is denoted by 𝑍𝑙@𝑍𝑠

𝐾,𝑙 =

1, 2, … , 𝑝, (𝑙 ≠ 𝑠).  
 

Notation 2.3. Since 𝑍𝑠
𝐾 values may not be unique, let 𝑟𝑠

𝐾 denote the number of such alternative 

solution 𝑟𝑠
𝐾 = 1, 2, … . 

 

Definition 2.4. The Kth ranked optimal solution of (1), denoted by ZK is the best solution in W, where 

 

𝑊 = {{𝐴𝑋 ≥ 𝑏, 𝑋 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} ∩ (𝑍1) ∩ (𝑍2) ∩ … ∩ (𝑍(𝐾−1))} , 𝑍1 = 𝑍𝑂𝑝𝑡𝑎𝑛𝑑 𝐾 ≥ 2 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1249-1269, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.093 

1251 

The Kth ranked optimal solution with respect to objective Zs in (2) will be, 

 

𝑍𝑠
𝑂𝑝𝑡

≤ 𝑍𝑠
2 ≤ 𝑍𝑠

3 ≤ ⋯ ≤ 𝑍𝑠
𝐾 , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 1, 2, … , 𝑝, 𝑎𝑛𝑑 𝐾 ≥ 1. 

 

Definition 2.5. A feasible solution x0 ∈ X is called efficient or (Pareto) solution, if there is no other 

x ∈ X such that Z(x0) ≥ Z(x). The set of all efficient solutions x0 ∈ X denoted XE  is called the efficient 

solution set. 

 

Definition 2.6. (Dominance) Let y1 and y2 be two points in the objective space, y1 dominates y2, 

donated by 𝑦1 ≤ 𝑦2, 𝑖𝑓 𝑦𝑠
1 ≤ 𝑦𝑠

2 𝑓𝑜𝑟 𝑠 = 1, 2, … , 𝑝.                
 

Definition 2.7. If x0 is efficient solution, Z(x0) is called non-dominated (Pareto) point (NDP), and 

the set of all non-dominated points y0 ∈ Y is denoted YND and is called the non-dominated points 

set. 

 

For further details see, Ehrgott (2005) and Steuer (1986). Various methods of integer programming 

have been reviewed in Kumar et al. (2010) 

 

3. Methods for Determination of Rank-Based Optimal Solutions 
Rank-based optimal solutions are difficult to identify as there are no defined conditions to identify 

the optimality of the Kth best solution, K ≥ 2. The Kth best solution is defined as the best solution, 

excluding the (K-1) best solutions. This requirement makes identification and determination of the 

Kth best solution to a given integer programming model more difficult. Some methods for 

determination of rank-based optimal solution are presented in this section, which is broadly 

classified into two categories. Determination of the Kth best solution, K ≥ 2 for a linear integer 

program involving fractions are discussed in Section 3.1, and methods for unimodular models, 

which are free of fractional values are presented in Section 3.2. 

 

3.1 The Characteristic Equation Technique for Determination of Ranked-Optimal 

Solutions for A Single-Objective Linear Integer Program 
Kumar et al. (2007) obtained a linear relation from the objective row of the final simplex tableau 

of the LP relaxation of the given linear integer programming model as given in equation (3). 

 

𝑍 + 𝑎𝑚+1,1,𝑠1 + 𝑎𝑚+1,2𝑠2 + ⋯ + 𝑎𝑚+1.𝑛𝑠𝑛= P                                                                            (3) 

 

In equation (3), 𝑠1, 𝑠2, … , 𝑠𝑛 are non-basic variables, 𝑍 is the objective function, 𝑎𝑚+1,𝑗, 𝑗 =

1,2, … , 𝑛 are the coefficients of these non-basic variables in the objective row and P denotes the 

value of the objective function. Usually, in the LP relaxation of the given pure integer linear 

programming model, the constants 𝑎𝑚+1,𝑗 are fractional values. The value of the objective function 

is given by P under the condition that all non-basic variables at the optimal solution are zero. It 

may be noted that the values of  𝑎𝑚+1,𝑗 are not fractional values for the unimodal problems. Note 

that equation (3) can be re-written as equation (4) given below. 

 

(
𝐷

𝐷
) 𝑍 +

𝛼1𝑠1+𝛼2𝑠2+⋯+𝛼𝑛𝑠𝑛

𝐷
=

𝑃′

𝐷
=

𝑅+𝑖𝐷

𝐷
                                                                                       (4) 

 

In equation (4), D is the common denominator, R is the integer residue of (
𝑃′

𝐷
) and 𝛼𝑗 represents 
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the integer coefficient of the non-basic variable 𝑠𝑗 𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑛. Note that 𝑎𝑚+1,𝑗 =
𝛼𝑗

𝐷
. 

 

From (4), Kumar et al. (2007) obtained a linear relation (5) and called it a descending hyperplane. 

 

∑ 𝛼𝑗𝑠𝑗
𝑛
𝑗=1 = 𝑅 + 𝑖𝐷, 𝑖 = 0, 1, 2, … . , ⌈

𝑃′

𝐷
⌉                                                                                                    (5) 

 
Equation (5) was later renamed by Kumar and Munapo (2012) as the characteristic equation for a 

pure integer programming model. Note that (5) is a necessary condition but it is not enough to 

ensure integer solutions. For integer solutions, the slack variables at the integer point need not be 

zero as in a linear programming model. However, when they are not zero, they also will be restricted 

to integer values. The LHS is a sum of these non-basic integer variables, which must be equal to 

𝑅 + 𝑖𝐷. The efficiency of the relation (5) in the identification of integer points is a function of these 

three parameters on the RHS i.e. the values 𝑅,  𝐷 and 𝑖. The largest value of 𝑖 is governed by the 

highest integer value of ⌈
𝑃′

𝐷
⌉.  

 

Equation (5) has interesting characteristics. For example: 

 

 A linear relation (5) will have positive R and D values ≥ 1, only when the objective function 

row of LP relaxation involves fractional values.  

 

 In the case of unimodal functions 𝑅 = 0, 𝐷 = 1 and ⌈
𝑃′

𝐷
⌉ = 𝑝′, hence the CE approach is not 

suitable for a unimodular function. Other methods for unimodular problems are required and 

they are discussed in section 3.2. 

 

 The solutions obtained with the help of relation (5) are ranked-optimal solutions in descending 

order. This is a unique feature of the CE, which is not seen in any other optimization method. 

Thus, the CE provides the optimal solution, as well as other ranked-optimal solutions in 

descending order. 

 

Numerical Illustration 1 
Consider a trivial 2-variable problem taken from Rabeeah et al. (2019).  

 

𝑧 = 𝑥1 − 𝑥2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥1 + 6𝑥2 ≤ 21, 14𝑥1 + 6𝑥2 ≤ 63, 𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                     (6) 

 

The optimal solution of the LP relaxation of (6) is given in Table 1. From the objective row in 

Table 1, the CE will be as given by (7): 

 

20 𝑥2 + 𝑠2 = 7 + 14𝑖, 𝑖 = 0,1, 2, 3 𝑎𝑛𝑑 4 𝑎𝑠 ⌈
63

14
⌉ = 4.                                                                            (7) 

 

Analysing equation (7) for  𝑖 = 0, equation (7) becomes 20 𝑥2 + 𝑠2 = 7, which has a feasible 

solution 𝑠2 = 7. For this value of the non-basic variable, the basic variables  

 

with the help of Table 1 becomes: 
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Table 1. Optimal LP solution 
 

Basic 𝑥1 𝑥2 𝑠1 𝑠2 RHS 

𝑠1 0 78/14 1 -1/14 231/14 

𝑥1 1 6/14 0 1/14 63/14 

𝑧𝑗 − 𝑐𝑗  0 20/14 0 1/14 63/14 

 

 

𝑠1 =
231

14
+ 7 (

1

14
) − (

78

14
) (0) = 17. 

𝑥1 = (
63

14
) − 7 (

1

14
) − (

6

14
) (0) = 4. 

 
Since 𝑥1 = 4, 𝑥2 = 0, 𝑠1 = 17 𝑎𝑛𝑑 𝑠2 = 7 is a feasible integer solution, it is the required optimal 

solution with 𝑧 = 4. 
 

For the 2nd best solution, returning to the equation (7) with  𝑖 = 1, resulting in  

 

20 𝑥2 + 𝑠2 = 21. 
 

The above equation has two alternative solutions 𝑥2 = 𝑠2 = 1 and 𝑥2 = 0, 𝑠2 = 21. Note the first 

solution will result into 𝑥1 = 4, 𝑥2 = 1, 𝑠1 = 11 𝑎𝑛𝑑 𝑠2 = 1, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑧 = 3. The second solution 

gives 𝑥1 = 3, 𝑥2 = 0, 𝑠1 = 18 𝑎𝑛𝑑 𝑠2 = 21, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑧 = 3. Thus we have two 2nd best solutions. 

 

Once again for the 3rd best solution, substitute 𝑖 = 2, resulting in  

 

20 𝑥2 + 𝑠2 = 35. 
 

The above equation has again two possible solutions. They are: 𝑥2 = 1 𝑎𝑛𝑑 𝑠2 = 15 and 𝑥2 =
0, 𝑠2 = 35. The first solution results in 𝑥1 = 3, 𝑥2 = 1, 𝑠1 = 12 𝑎𝑛𝑑 𝑠2 = 15, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑧 =2. The 

second solution results in 𝑥1 = 2, 𝑥2 = 0, 𝑠1 = 19 𝑎𝑛𝑑 𝑠2 = 35, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑧 = 2. Thus we have two 

alternative 3rd best solutions. 

 

Similarly, one can trace other solutions and verify them graphically. 

 

3.2 Determination of Rank-Based Optimal Solutions for Unimodular Models 
The CE approach is not applicable for the unimodular models, such as assignment and 

transportation models. For ease of presentation, we discuss the case of an assignment model and 

find the Kth best solution by the Random Search Method developed by Kumar et al. (2018). It is 

presented in section 3.2.1.  

 

3.2.1 A Random Search Method to Find the Rank-Based Solutions of An Assignment 

Model 
The random search method is a probabilistic approach to find the Kth best solution of a unimodular 

model, such as an assignment model. We find the Kth best solution for a given assignment model, 

K ≥ 2. The RSM can be described by the following steps: 

 

 One is required to find the number of possibilities for estimating the probability of a successful 
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solution in the feasible domain. In an assignment problem of size n × n, if the optimal solution 

is unique and after determination of that optimal solution, one has (n(n−1)) unoccupied cells. 

These unoccupied cells offer possibilities of other ranked solutions. However, if there r1 

number of alternative optimal solutions, the possibilities become r1(n(n − 1)). Therefore, the 

probability of a successful solution is given by: =  
1

𝑟1(𝑛(𝑛−1))
, 𝑟1 ≥ 1. . 

 

Here a successful solution means that a solution picked up randomly may be the required Kth 

best solution with probability 𝑝 =  
1

𝑟1(𝑛(𝑛−1))
. In general, for the Kth best solution, K ≥ 2, the 

probability will be given by:  𝑝 =
1

𝑛(𝑛−1) ∑ 𝑟𝑖
𝑖=(𝐾−1)
𝑖=1

, 𝑟𝑖 ≥ 1, 𝑖 = 1, 2, … , (𝐾 − 1).  

 

 The value of assurance factor, denoted by (PR), is a given probability assigned for assurance 

of the results we find by the computational experiments. Here we have assumed PR = 0.85.  

 

 In the application of RSM one needs the rule to stop these random searches, which is given by 

relation (8), where (NS) denotes the number of random searches. 

 

𝑁𝑆 =
l n(1−𝑃𝑅)

l n(1−
1

𝑛(𝑛−1) ∑ 𝑟𝑖
𝐾−1
𝑖=1

)

                                                                                                                  (8) 

 

This random search approach has been executed as Algorithm 1. 

 

Algorithm 1 (Random Search Method for Finding "Kth" Best Optimal Solution)  
Step 1. Initialize 

1.1 Set Zranked ←− Zt
opt;t = 1,2,..r1 (r1 number of multi optimal solutions) 

1.2 Let L ≥ 2 and integer (L number of ranked optimal solution required) 

1.3  𝑝 =  
1

𝑟1(𝑛(𝑛−1))
  ; 0 ≤ 𝑃𝑅 ≤ 1  (p is probability; PR is the value of assurance factor) 

1.4 S = 0;K = 2 (S is counter of Z; K is second best optimal solution ) 

 

Step 2. 

2.1      Z∗ ←− ∅. (Z∗ is a set of ZS values) 

2.2      𝑁𝑆 =
l n(1−𝑃𝑅)

l n(1−
1

𝑛(𝑛−1) ∑ 𝑟𝑖
𝐾−1
𝑖=1

)

 

2.3 Xrand ←− ∅ (Xrand is a set of xij). 

 

Step 3. Main Loop 

3.1 Do S = S + 1 

3.2 Choose rand(xij)S. 

3.3 If xij ∈ Xrand then ignore rand(xij)S GoTo Step 3.2, else continue 

3.4 Add xij → Xrand. 

3.5 Rand   (𝑥𝑖𝑗)
𝑠

⇒ 𝑥𝑖𝑗
∗   ,   𝑥𝑖𝑗

∗       is optimal solution) 
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3.6 Z∗ ←−ZS. ( ZS solution at rand(xij)S ) 

3.7 3.7 If S = (NS + 1) GoTo 4. Else GoTo Step 3. 

Step 4. Rank Z∗ → find the best ZK; Zranked←−ZKth . 

Step 5. If K = L GoTo Step 6 . Else K = K + 1 Goto Step 2. 

Step 6. Rank Zranked 

 

Numerical Illustration 2 
We consider an assignment problem (9) 

 

Min Z = ∑ ∑ 𝐶𝑖𝑗
4
𝑗=1

4
𝑖=1  𝑥𝑖𝑗                                                                                             (9) 

 

Subject to 

∑ 𝑥𝑖𝑗

4

𝑖=1

= 1;   𝑗 = 1,2, … ,4 

∑ 𝑥𝑖𝑗

4

𝑗=1

= 1;   𝑖 = 1,2, … ,4 

 

Such that∶  𝐶𝑖𝑗 = [

7     5     5     9
2      9     9     7
4      2     7     1
2      1     5     7

]. 

 

We select the PR =0.80, ; K=2 and we find 𝑝 =
1

(𝐾−1)𝑛(𝑛−1)
=

1

12
. 

 

Then, the number of search (NS) from the equation:  

 

𝑁𝑆 = [
𝑙𝑛(1−𝑃𝑅)

𝑙𝑛(1−𝑝)
] = [

𝑙𝑛(1−0.8)

𝑙𝑛(1−
1

12
)
]=18; [ ] 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Step 1. 

The optimal solution of the assignment problem is: 

 J1 J2 J3 J4 

S1 2 0 0 4  

S2 0 7 7 5  

S3 3 1 6 0 

S4 1 0 4 6 

 

 J1 J2 J3 J4 

S1 2 0 0 4  

S2 0 7 7 5  

S3 3 1 6 0 

S4 1 0 4 6 
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Step 2. 
The number of searches, NS is equal to 18. Choose randomly a non-basic cell and let that cell be 

𝑥11. Then the non-basic cells 𝑥11 and  𝑥23 𝑤𝑖𝑙𝑙 𝑏𝑒 replaced with  basic cells  𝑥13 and 𝑥21. 

 

 

The solution and Z from the above table is: 𝑋 = 𝑥11, 𝑥23, 𝑥34, 𝑥42,  𝑍1,2 = 18. 

 

We continue this process NS number of times to compute  𝑍1,3, 𝑍1,4, … , 𝑍1,18. 

 

Step 3.  

These solutions are arranged as:  𝑍1,2,𝑍1,3, 𝑍1,4, … , 𝑍1,18 in descending order. Many solutions are 

repeated, thus from the 18 randomly generated solutions, we obtain only 6 distinct solutions as 

given in Z value of Table 2. 

 
Table 2. Results from the random search 

 

Z X 

Z*= 9 𝑥13, 𝑥21, 𝑥34, 𝑥42 

𝑍13 = 13 𝑥12, 𝑥21, 𝑥34, 𝑥43, 

𝑍15 = 16 𝑥13, 𝑥22, 𝑥32, 𝑥44, 

𝑍14 = 17 𝑥13, 𝑥24, 𝑥31, 𝑥42, 

𝑍17 = 17 𝑥13, 𝑥22, 𝑥34, 𝑥41, 

𝑍16 = 18 𝑥11, 𝑥23, 𝑥34, 𝑥42, 

𝑍12 = 19 𝑥14, 𝑥21, 𝑥33, 𝑥42, 

 

 

From Table2, we take 𝑍13  representing the 2nd-best solution with probability 0.80. 

 

Step 4. 

We choose from Table 2, the solution 𝑍13, then reapply step 2 and step 3 on the selected solution. 

This process is continued for K=5 ranked-best solutions, which is shown in Table 3 

 

 

 

 

 J1 J2 J3 J4 

S1 
2 0 0 4  

S2 
0 7 7 5  

S3 
3 1 6 0 

S4 
1 0 4 6 
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Table 3. 𝑍5𝑡ℎ
 best assignment solution for illustrative example 

 

𝑍𝐾 Z value X Alternative solutions 

𝑍1 9 x
13

, x
21

, x
34

, x
42 1 

𝑍2𝑛𝑑 13 x
12

, x
21

, x
34

, x
43 1 

𝑍3𝑑𝑟 16 x
13

, x
21

, x
32

, x
44 

2 

x
13

, x
24

, x
32

, x
41 

𝑍4𝑡ℎ
 17 x

13
, x

24
, x

31
, x

42 3 

x
13

, x
22

, x
34

, x
41

 

x
12

, x
23

, x
34

, x
41

 

𝑍5𝑡ℎ
 18 x

14
, x

21
, x

32
, x

43 1 

 

 

3.2.2 Murty’s Approach for Ranked-Based Solutions 
Murty (1968) suggested to solve the given 𝑛𝑋𝑛 assignment model by the Hungarian method and 

let the optimal solution be denoted by a string of n allocations satisfying the assignment constraints. 

Let the string representing the optimal solution be denoted by  

 

𝑎(1) = {(𝑖1, 𝑗1), (𝑖2, 𝑗2), … , (𝑖𝑛, 𝑗𝑛)}. Let the total cost associated with this optimal solution be 

denoted by TC(1). Since the 2nd best solution will differ from the best by at least one allocation, 

Murty solved n-1 more problems by substituting, one at a time (𝑖𝑙 , 𝑗𝑙) = ∞, 𝑙 = 1, 2, … , 𝑛 − 1. Let 

these total costs be denoted by 𝑇𝐶((𝑖1, 𝑗1) = ∞), 𝑇𝐶((𝑖2, 𝑗2) = ∞), … , 𝑇𝐶((𝑖𝑛−1, 𝑗𝑛−1) = ∞). 

 

Minimum total cost for these n-1 problems will be the required 2nd best solution and the allocation 

will be represented by its corresponding string and the cost matrix will be denoted with appropriate 

link, (𝑖𝑙 , 𝑗𝑙) = ∞. The process will continue for the subsequent Kth best solution, K ≥ 2. Thus, for 

every K, one has to solve at least 𝑛 − 1 more problems of size nXn,...,2X2, with one or more 

elements equal to ∞ in the given cost matrix. 

 

Numerical Illustration 3 
Murty’s approach is illustrated, using the same numerical illustration 2, discussed above.  
 

Step 1. 

The optimal solution of the assignment problem (9) is: 

 

 

 J1 J2 J3 J4 

S1 2 0 0 4  

S2 0 7 7 5  

S3 3 1 6 0 

S4 1 0 4 6 
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Step 2. 

Return back to problem (9) and set one basic cell equal to a large number, say 1000, which are 

the basic cells i.e., (1,3), (2,1), (3,4) and (4,2), therefore 4 new assignment problems will have to 

be solved. The first one will be as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal solution for the assignment data with cell (1,3) =1000 is given by: 

 

Optimal cost =13, Optimal allocation is at cells (1,2), (2,1), (3,4) and (4,3). Similarly, results of 

the remaining three problems are shown in Table 4. 

 

 
Table 4. Finding the second best the optimal solution using Murty’s approach 

 

Basic cell = 1000  Z value X 

X
13 13 x

12
, x

21
, x

34
, x

43 

X
21 16 x

13
, x

24
, x

32
, x

41 

X
34 16 x

13
, x

21
, x

32
, x

44 

X
42 13 x

12
, x

21
, x

34
, x

43 

 

 
Therefore, the second-best solution is 13, and optimal allocation is {𝑥12, 𝑥21, 𝑥34, 𝑥43}. The 

similar analysis will have to be carried out for the 3rd best solution from the second-best solution. 

However, it may be noted that apparently the second-best solution is resulting in the same allocation 

from two different cases. Therefore, we must solve 8 problems, four for each case. Four problems 

will be solved with cell (1,3) =1000 and one at a time i.e. cell (1,2), (2,1), (3,4) and (4,3) =1000 

and other four problems will be with the cell (4,2) =1000 and one at a time cell (1,2), (2,1), (3,4) 

and (4,3). Murthy does not consider this possibility. 

 

4. Literature Review for Non-Dominated Point Set for a Multi-Objective Integer 

Programming Model 
There are many approaches in the literature that have been developed to find the non-dominated 

points set, for a given multi-objective integer programming (MOIP) model, for example see, 

(Steuer, 1986; Ehrgott, 2005; Greco et al., 2016). Multi-objective combinatorial optimization 

(MOCO) problems are a special case of MOIP problems, where all variables are binary. For 

 J1 J2 J3 J4 

S1 7 5 𝟏𝟎𝟎𝟎 9  

S2 𝟐 9 9 7 

S3 4 2 7 1 

S4 2 1 5 7 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1249-1269, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.093 

1259 

example, see the survey by Ehrgott and Gandibleux (2000), which deals with a variety of methods 

and models for MOCO problems. They have discussed some exact and approximate methods for 

the identification of non-dominated point set for MOIP models. Ulungu and Teghem (1995) have 

presented a two phases method (TPM) to find all non-dominated points for bi-objective assignment 

problems. In phase one, the supported non-dominated points are determined. In phase two, the non-

supported points are obtained. The TPM was improved by Przybylski et al. (2008) and they applied 

to solve the three-objective assignment problem (Przybylski et al., 2010b). TPM has also been 

applied on several other MOCO models Al-Hasani et al. (2019). Sylva and Crema (2004, 2007) 

have provided algorithms for generating non-dominated points set with limited success, particularly 

for larger size instances. Özlen and Azizoğlu (2009) developed an approach based on the ∈
−constraint method, which was developed by Haimes (1971). Przybylski et al. (2010a) have 

presented an algorithm that generates all non-dominated points for MOIP problems; they tested 

their algorithm on three objective assignments and knapsack problems. The well-established ε-

constraint scalarization and partitioning mechanism were used by Kirlik and Sayın (2014) and 

compared with Özlen and Azizoğlu (2009). Özlen et al. (2014) modified their previous approach 

and presented a comparison with their previous work for MOA problems. Boland et al. (2015) have 

presented a new approach, called Balanced Box Method (BBM) for bi-objective integer 

programming models. The BBM solves IP’s three times the number of non-dominated points and 

therefore, it takes a lot of time to generate the non-dominated set. The L-shape search method has 

been presented by Boland et al. (2016) and applied to three-objective integer programmes and 

compared with Özlen et al. (2014) and Kirlik and Sayın (2014). Al-Rabeeah et al. (2020) developed 

an improved recursive method that out preformed many existing methods, mainly due to adopting 

a different scalarization scheme. This method decreased the number of sub-problems solved and 

hence the related CPU time was improved accordingly. 

 

The complexity of a multi-objective assignment problem has been described by many authors, for 

example, see Ehrgott (2005). Due to these complexities and difficulties, the researchers have 

justified a need for approximation approaches to find the non-dominated points set. One such 

approach is by Teghem et al. (2000), which generalizes the multi-objective simulated annealing 

(MOSA) method. An interactive approach to generate the set of non-dominated points was 

developed by Tuyttens et al. (2000). Laumanns et al. (2006) presented a method to generate an 

approximate set of non-dominated point set for the MOA problem. 

 

In this paper, a new approach to generate the non-dominated points set for a multi-objective integer 

programming (MOIP) model has been developed. The method is based on identifying the ranked 

optimal solutions to a single-objective integer programming model. As seen earlier in three 

numerical illustrations, unlike the optimal solution of a single-objective model, the ranked optimal 

solutions are computationally more demanding, as they do not have defined conditions for 

optimality of the 𝐾𝑡ℎ best solution. Several methods have been discussed in this paper and 

developing more methods is a future challenge for further investigation. 

 

Although computationally these methods are demanding but are easy to understand, and implement 

with in terms of CPU time and number of IP’s is much less compared to many previous methods 

such as Balanced Box method by Boland et al. (2015), MOIP-AIRA by Özlen et al. (2014) etc. 
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5. Rank Based Solution Method for Determination of the Non-Dominated Point Set 

for a Bi-Objective Linear Integer Programming Model  
The RBSM method for Bi-objective linear integer programming (BOIP) model comprised of the 

following steps: 

 

Step 1. Find the upper bound  𝑍𝑈𝐵 = (𝑍1
1, 𝑍2@𝑍1

1)  and the lower bound (ZLB) = (𝑍1@𝑍2
1 , 𝑍2

1), which 

are the initial two non-dominated points for the given bi-objective problem. Here, 𝑍1
1 = 𝑍1

𝑜𝑝𝑡
 and, 

𝑍2
1 = 𝑍2

𝑜𝑝𝑡
respectively.The (ZUB) and (ZLB) determines the endpoint of the search for the non-

dominated points set. 

 

Step 2. Find the ranked optimal solution for Z1 and Z2 by using an appropriate method and denote 

them by {𝑍1
1, 𝑍1

2, … , 𝑍1
𝐾}  and {𝑍2

1, 𝑍2
2, … , 𝑍2

𝐾}, respectively. The value of K may be different for 

the two objectives, as 𝑍1
1 ≤ 𝑍1

𝐾 ≤ 𝑍1@𝑍2
1     and 𝑍2

1 ≤ 𝑍2
𝐾 ≤ 𝑍2@𝑍1

1. 

 

Step 3. Find the potential non-dominated points with respect to 𝑍1 𝑎𝑛𝑑 𝑍2 and denoted by  

 

(𝑍
1@𝑍2

𝑙2 , 𝑍2
𝑙2) ; 𝑙2 = 2,3, … , 𝐾 and (𝑍1

𝑙1 , 𝑍
2@𝑍1

𝑙1 ) ; 𝑙1 = 2,3, … , 𝐾, respectively. 

 

Step 4. The non-dominated point set YND is a subset of potential non-dominated point set which is 

obtained by testing each potential non-dominated point for dominance. 

 

The Algorithm 2 provide the stepwise description of RBSM for BOLIP model. 

 

Algorithm 2. (RBSM Algorithm for BOIP Problem) 
Let Z Bi-objective linear integer programming model  

 

Initialize  

i. RBS(Z1) ← ∅ ;  RBS(Z2)  ← ∅ ;  PNDP ← ∅ ; NDP ← ∅  

ii. NDP ← ZUP = ( Z1opt,Z2@Z1opt) & ZLR = (Z1@Z2opt,Z2opt) 

RBS(Z1) ← 𝑍1
2, … , 𝑍

1@𝑍2
𝑜𝑝𝑡  

RBS(Z2) ← { 𝑍2
2, … , 𝑍

2@𝑍1
𝑜𝑝𝑡} 

 

iii. Find PNDP points for RBS(Z1) and Add → PNDP 

Find PNDP points for RBS(Z2) and Add → PNDP; 

iv. If PNDP point is non-dominated point → NDP; else → delete PNDP point. 

v. Stop. 

 

6. Some Interesting Observations about the Ranked Based Solutions  
The Rank Based Solution Method finds the non-dominated points set YND for the given MOIP 

model. It first finds ordered integer optimal solutions with respect to an objective Zs, where s = 

1,2,..p. 

 

Observation 6.1. A unique optimal solution with respect to the objective Zs is a non-dominated 
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point for the given MOIP. In addition, the ranked optimal solutions with respect to each objective 

Zs are also potential non-dominated points for the given MOIP. 

 

Observation 6.2. The relationship between the ranked best solutions for a single objective function 

Zs and non-dominated point set YND in the criterion space is very strong. All non-dominated points 

are ranked optimal solutions, but all ranked optimal solutions are not necessarily points of 

the non-dominated point set. 

 

Observation 6.3. A unique optimal solution for a single objective integer programming model has 

a property that it always leads to an upper bound or a lower bound of the non-dominated point set 

for the bi-objective MOIP model. However, for the multi-optimal solutions, one and only one of 

them will result in an upper bound or a lower bound point of the non-dominated point set. 

 

Observation 6.4. A single objective integer programming model may have rs
K ≥ 1, number of multi 

ranked optimal solutions for a given objective s, s = 1, 2, ..., p. From these rs
K number of alternative 

solutions, one and only one solution will become potential non-dominated point in the objective 

space. 

 

7. Ranked Based Solution Method for Multi-Objective Integer Programming Model  
The Rank Based Solution Method (RBSM) discussed above for the bi-objective integer model can 

be easily extended for determination of the non-dominated points set YND for a given multi-objective 

integer programming model. Once again, the approach is based on the determination of ordered 

optimal solutions with respect to an objective Zs, where s = 1, 2, ..., p.  and each point is tested for 

dominance. 

 

Algorithm 3. (RBSM Algorithm for MOIP Problem) 
Let Z Bi-Objective Linear Integer Programming Model 

 

Initialize  

i. RBS(Z1) ← ∅ ;  RBS(Z2)  ← ∅ ;  PNDP ← ∅ ; NDP ← ∅  

ii. NDP ← ZUP = ( Z1opt,Z2@Z1opt) & ZLR = (Z1@Z2opt,Z2opt) 

             RBS(Z1) ← 𝑍1
2, … , 𝑍

1@𝑍2
𝑜𝑝𝑡  

             RBS(Z2) ← { 𝑍2
2, … , 𝑍

2@𝑍1
𝑜𝑝𝑡} 

iii. Find PNDP points for RBS(Z1) and Add → PNDP 

             Find PNDP points for RBS(Z2) and Add → PNDP; 

iv. If PNDP point is non-dominated point → NDP; else → delete PNDP point. 

v. Stop. 

 

8. Computational Illustration of the Rank-Based Solution Method 
In this section, two numerical examples are presented to illustrate the bi-objective and multi-

objective problem for the application of the rank-based solution method. 
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8.1 Numerical Illustrations 
Example 4 

Consider a BOAM instance of size 4 × 4.  

𝑀𝑖𝑛𝑍(𝑥) = ∑

4

𝑖=1

∑

4

𝑗=1

𝑃𝑖𝑗
𝑟 𝑥𝑖𝑗𝑟 = 1,2 

Subject to  

∑

4

𝑗=1

 𝑥𝑖,𝑗 = 1    𝑖 = 1, … ,4. 

∑

4

𝑖=1

 𝑥𝑖,𝑗 = 1    𝑗 = 1, … ,4. 

𝑥𝑖,𝑗 = {
0
1

; ∀(𝑖, 𝑗). 

where, 

 𝑃𝑖,𝑗
1 = [

5 2 9 6
1 10 8 2
2 3 8 9
5 7 3 1

] , 𝑃𝑖,𝑗
2 = [

2 20 1 12
10 4 2 13
22 5 4 1
2 4 32 11

] 

 

• Find the optimal solution in respect of 𝑍1 and 𝑍2. Let the optimal be denoted by 𝑍1
1, 𝑍2

1, 

respectively. The value of 𝑍1
1 = 9 and 𝑍2

1 = 8.  

 

• Find the value of 𝑍2 at the point where 𝑍1
1 = 9. This gives an upper non-dominated point 

(𝑍1
1, 𝑍2@𝑍1

1) = (9,87). Similarly, the lower non-dominated point (𝑍1@𝑍2
1 , 𝑍2

1) = (33,8). 

 

• Using the RSM find ranked optimal solutions in respect of 𝑍1, denoted by 𝑍1
𝐾, 𝐾 = 2,3, …, such 

that 𝑍1
𝐾 ≤ 33. Similarly, repeat on 𝑍2, such that 𝑍2

𝐾 ≤ 87 , 𝐾 = 2,3, …,.  
 

• For each 𝑍1
𝐾, find 𝑍2@𝑍1

𝐾  to obtain a potential non-dominated point denoted by (𝑍1
𝐾 , 𝑍2@𝑍1

𝐾), 

see Table 5. Similarly, determine the potential non-dominated point in respect of 𝑍2
𝐾, which 

are denoted (𝑍1@𝑍2
𝐾 , 𝑍2

𝐾), see Table 6. 

 

• Using definition 6, find the non-dominated set from all potential non-dominated points as 

shown in Figure 1.  

 

• All Non- dominated point are also shown in Table 7. 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 6, 1249-1269, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.6.093 

1263 

   
 

Figure 1. All potential non-dominated points 

 

 

Table 5. Potential non-dominated points for the first objective function 𝑍1 
 

No. 𝑍𝑟𝑎𝑛𝑘 𝑍1
𝑘 (𝑍1

𝑘 , 𝑍2@𝑍1
𝑘) Potential non-dominated points 

1 𝑍1
𝑜𝑝𝑡

 9 (𝟗, 𝟖𝟕) (𝟗, 𝟖𝟕) 

2 𝑍1
2 12 (12,45) (12,45) 

3 𝑍1
3 13 (13,59) — 

4 𝑍1
3 13 (13,52) (13,52) 

5 𝑍1
3 13 (13,55) — 

6 𝑍1
4 14 (14,27) (14,27) 

7 𝑍1
5 15 (15,63) (15,63) 

8 𝑍1
6 17 (17,20) (17,20) 

9 𝑍1
6 17 (17,39) — 

10 𝑍1
7 19 (19,21) (19,21) 

11 𝑍1
8 20 (20,40) (20,40) 

12 𝑍1
9 21 (21,70) (21,70) 

13 𝑍1
10 22 (22,30) — 

14 𝑍1
10 22 (22,21) (22,21) 

15 𝑍1
10 22 (22,38) — 

16 𝑍1
10 22 (22,23) — 

17 𝑍1
11 23 (23,40) (23,40) 

18 𝑍1
12 24 (24,25) — 

19 𝑍1
12 24 (24,21) (24,21) 

20 𝑍1
13 26 (26,16) (26,16) 

21 𝑍1
14 27 (27,39) (27,39) 

22 𝑍1
15 29 (29,9) (29,9) 

23 𝑍1
15 29 (29,22) — 

24 𝑍1
16 33 (33,8) (33,8) 
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Table 6. Potential non-dominated points for the second objective function 𝑍2 
 

No. 𝑍𝑟𝑎𝑛𝑘 𝑍2
𝑘 (𝑍1@𝑍2

𝑘 , 𝑍2
𝑘) Potential non-dominated points 

1 𝑍2
𝑜𝑝𝑡

 8 (33,8) (33,8) 

2 𝑍2
2 9 (29,9) (29,9) 

3 𝑍2
3 16 (26,16) (26,16) 

4 𝑍2
4 20 (17,20) (17,20) 

5 𝑍2
5 21 (19,21) (19,21) 

6 𝑍2
5 21 (22,21) — 

7 𝑍2
5 21 (24,21) — 

8 𝑍2
6 22 (29,22) (29,22) 

9 𝑍2
7 23 (22,23) (22,23) 

10 𝑍2
8 25 (24,25) (24,25) 

11 𝑍2
9 27 (14,27) (14,27) 

12 𝑍2
10 30 (22,30) (22,30) 

13 𝑍2
11 38 (22,38) (22,38) 

14 𝑍2
12 39 (27,39) — 

15 𝑍2
12 39 (17,39) (17,39) 

16 𝑍2
13 40 (23,40) — 

17 𝑍2
13 40 (20,40) (20,40) 

18 𝑍2
14 45 (12,45) (12,45) 

19 𝑍2
15 52 (13,52) (13,52) 

20 𝑍2
16 55 (13,55) (13,55) 

21 𝑍2
17 59 (13,59) (13,59) 

22 𝑍2
18 63 (15,63) (15,63) 

23 𝑍2
19 70 (21,70) (21,70) 

24 𝑍2
20 87 (9,87) (9,87) 

 

 

Table 7. All non-dominated points for Example 1 
 

No. (𝑍1
𝑟𝑎𝑛𝑘 , 𝑍2

𝑟𝑎𝑛𝑘) Non-dominated point 

1 (Z1
opt

, Z2
20) (9,87) 

2 (Z1
2, Z2

14) (12,45) 

3 (Z1
4, Z2

9) (14,27) 

4 (Z1
6, Z2

4) (17,20) 

5 (Z1
13, Z2

3) (26,16) 

6 (Z1
15, Z2

2) (29,9) 

7 (Z1
16, Z2

opt
) (33,8) 

 

 

Example 5 

In order to illustrate the RBSM for a multi-objective situation, the third objective function is added 

to Example 4, 

 

Let 

𝑃𝑖,𝑗
3 = [

15 2 5 8
3 6 10 11
22 6 6 4
20 7 3 10

]. 

 

• Once again find the optimal solutions in respect of 𝑍1, 𝑍2 and 𝑍3. Let these optimal solutions 

be denoted by 𝑍1
1, 𝑍2

1 and 𝑍3
1, respectively. The values of 𝑍1

1 = 9, 𝑍2
1 = 8 are known from 

example 4 and 𝑍3
1 = 12.  
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• Find the value of (𝑍2, 𝑍3) at the point where 𝑍1
1 = 9. This gives first non-dominated points 

(𝑍1
1, 𝑍2@𝑍1

1 , 𝑍3@𝑍1
1) = (9,87,38). Similarly, find two more non-dominated points with respect 

to 𝑍2
1 and 𝑍3

1. These points are given by (𝑍1@𝑍2
1 , 𝑍2

1, 𝑍3@𝑍2
1) = (33,8,35) and 

(𝑍1@𝑍3
1 , 𝑍2@𝑍3

1 , 𝑍3
1) = (15,63,12), respectively. 

 

• Using the RSM (Kumar et al., 2018) find ranked optimal solutions in respect of 𝑍1, denoted by 

𝑍1
𝐾, such that 𝑍1

𝐾 ≤ 𝑀𝑎𝑥(𝑍1@𝑍2
1 , 𝑍1@𝑍3

1). Similarly, repeat on 𝑍2 and 𝑍3 such that 𝑍2
𝐾 ≤

𝑀𝑎𝑥(𝑍2@𝑍1
1 , 𝑍2@𝑍3

1) and 𝑍3
𝐾 ≤ 𝑀𝑎𝑥(𝑍3@𝑍1

1 , 𝑍3@𝑍2
1), respectively. 𝐾 = 2,3, ….  

 

• For each 𝑍1
𝐾, find (𝑍2@𝑍1

𝐾 , 𝑍3@𝑍1
𝐾) to obtain the potential non-dominated points denoted by 

(𝑍1
𝐾 , 𝑍2@𝑍1

𝐾 , 𝑍3@𝑍1
𝐾), see Table 9 in the appendix. Similarly, determine the potential non-

dominated points in respect of 𝑍2
𝐾 and 𝑍3

𝐾, which are denoted (𝑍1@𝑍2
𝐾 , 𝑍2

𝐾 , 𝑍3@𝑍2
𝐾 ) and 

(𝑍1@𝑍3
𝐾 , 𝑍2@𝑍3

𝐾 , 𝑍3
𝐾 , ), respectively. The Tables 8, 9 and 10 give the potential non-dominated 

points. 

 

• Using definition 6, all potential non-dominated points in Tables 8, 9 and 10 are tested and the 

set of non- dominated point 𝑌𝑁𝐷 are shown in Table 11. 

 

 
Table 8. Potential non-dominated points for first objective function 

 

No. 𝑍1
𝑟𝑎𝑛𝑘 𝑍1

𝑙1 Potential non-dominated points Non-dominated points 

1 𝑍1
𝑜𝑝𝑡

 9 (9,87,38) (9,87,38) 

2 𝑍1
2 12 (12,45,21) (12,45,21) 

3 𝑍1
3 13 (13,59,20) (13,59,20) 

4 𝑍1
3 13 (13,52,35) —– 

5 𝑍1
3 13 (13,55,44) —– 

6 𝑍1
4 14 (14,27,24) (14,27,24) 

7 𝑍1
5 15 (15,63,12) (15,63,12) 

8 𝑍1
6 17 (17,20,41) (17,20,41) 

9 𝑍1
6 17 (17,39,39) —– 

10 𝑍1
7 19 (19,21,42) —– 

11 𝑍1
8 20 (20,40,45) —– 

12 𝑍1
9 21 (21,70,39) —– 

13 𝑍1
10 22 (22,30,24) —– 

14 𝑍1
10 22 (22,21,34) —– 

15 𝑍1
10 22 (22,38,43) —– 

16 𝑍1
10 22 (22,23,39) (22,23,39) 

17 𝑍1
11 23 (23,40,47) —– 

18 𝑍1
12 24 (24,25,36) (24,25,36) 

19 𝑍1
12 24 (24,21,37) (24,21,37) 

20 𝑍1
13 26 (26,16,19) (26,16,19) 

21 𝑍1
14 27 (27,39,28) —– 

22 𝑍1
15 29 (29,9,36) (29,9,36) 

23 𝑍1
15 29 (29,22,40) —– 

24 𝑍1
16 33 (33,8,35) (33,8,35) 
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Table 9. Potential non-dominated points for second objective function 
 

No. 𝑍2
𝑟𝑎𝑛𝑘 𝑍2

𝑙2 Potential non-dominated points Non-dominated points 

1 𝑍2
𝑜𝑝𝑡

 8 (33,8,35) (33,8,35) 

2 𝑍2
2 9 (29,9,36) (29,9,36) 

3 𝑍2
3 16 (26,16,19) (26,16,19) 

4 𝑍2
4 20 (17,20,41) (17,20,41) 

5 𝑍2
5 21 (19,21,42) —– 

6 𝑍2
5 21 (22,21,34) —– 

7 𝑍2
5 21 (24,21,37) (24,21,37) 

8 𝑍2
6 22 (29,22,40) —– 

9 𝑍2
7 23 (22,23,39) (22,23,39) 

10 𝑍2
8 25 (24,25,36) (24,25,36) 

11 𝑍2
9 27 (14,27,24) (14,27,24) 

12 𝑍2
10 30 (22,30,24) —– 

13 𝑍2
11 38 (22,38,34) —– 

14 𝑍2
12 39 (27,39,28) —– 

15 𝑍2
12 39 (17,39,39) —– 

16 𝑍2
13 40 (23,40,47) —– 

17 𝑍2
13 40 (20,40,45) —– 

18 𝑍2
14 45 (12,45,21) (12,45,21) 

19 𝑍2
15 52 (13,52,35) —– 

20 𝑍2
16 55 (13,55,44) —– 

21 𝑍2
17 59 (13,59,20) (13,59,20) 

22 𝑍2
18 63 (15,63,12) (15,63,12) 

23 𝑍2
19 70 (21,70,39) —– 

24 𝑍2
20 87 (9,87,38) (9,87,38) 

 

 
Table 10. Potential non-dominated points for third objective function 

 

No. 𝑍3
𝑟𝑎𝑛𝑘 𝑍3

𝑙3 Potential non-dominated points Non-dominated points 

1 𝑍3
𝑜𝑝𝑡

 12 (15,63,12) (15,63,12) 

2 𝑍3
2 19 (26,16,19) (26,16,19) 

3 𝑍3
3 20 (13,59,20) (13,59,20) 

4 𝑍3
4 21 (12,45,21) (12,45,21) 

5 𝑍3
5 24 (14,27,24) (14,27,24) 

6 𝑍3
5 24 (22,30,24) —– 

7 𝑍3
6 28 (27,39,28) —– 

8 𝑍3
7 35 (33,8,35) (33,8,35) 

9 𝑍3
7 35 (13,52,35) —– 

10 𝑍3
8 36 (29,9,36) (29,9,36) 

11 𝑍3
8 36 (24,25,36) (24,25,36) 

12 𝑍3
9 37 (24,21,37) (24,21,37) 

13 𝑍3
10 38 (9,87,38) (9,87,38) 

14 𝑍3
11 39 (22,23,39) (22,23,39) 

15 𝑍3
11 39 (17,39,39) —– 

16 𝑍3
11 39 (21,70,39) —– 

17 𝑍3
12 40 (29,22,40) —– 

18 𝑍3
13 41 (17,20,41) (17,20,41) 
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Table 11. All non-dominated points 
 

No. (𝑍1
𝑟𝑎𝑛𝑘, 𝑍2

𝑟𝑎𝑛𝑘 , 𝑍3
𝑟𝑎𝑛𝑘) Non-dominated point 

1 (𝑍1
𝑜𝑝𝑡

, 𝑍2
20, 𝑍3

10) (9,87,38) 

2 (𝑍1
2, 𝑍2

14, 𝑍3
4) (12,45,21) 

3 (𝑍1
4, 𝑍2

17, 𝑍3
3) (13,59,20) 

4 (𝑍1
4, 𝑍2

9, 𝑍3
5) (14,27,24) 

5 (𝑍1
5, 𝑍2

18, 𝑍3
opt

) (15,63,12) 

6 (𝑍1
6, 𝑍2

4, 𝑍3
13) (17,20,41) 

7 (𝑍1
10, 𝑍2

10, 𝑍3
11) (22,23,39) 

8 (𝑍1
12, 𝑍2

8, 𝑍3
8) (24,25,36) 

9 (𝑍1
12, 𝑍2

5, 𝑍3
9) (24,21,37) 

10 (𝑍1
13, 𝑍2

3, 𝑍3
2) (26,16,19) 

11 (𝑍1
16, 𝑍2

2, 𝑍3
8) (29,9,36) 

12 (𝑍1
16, 𝑍2

𝑜𝑝𝑡
, 𝑍3

7) (33,8,35) 

 

 

9. Conclusion and Future Study 
The importance of an optimal solution in single-objective problems is well known, however, in this 

paper, a need for ranked-optimal solutions has also been established. This paper also points out that 

ranked-optimal solutions are computationally demanding and there is a need to establish more 

methods capable to find efficiently ranked-optimal solutions. In this paper, a rank-optimal solution 

method has been established to find non-dominated point set for a multi-objective problem.  

 

Future studies will consider the application of rank-optimal solution method for other models such 

as Knapsack and transportation.  
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