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Abstract 

Soil-structure-interaction (SSI) analyses are essential to evaluate the seismic performance of important structures 

before finalizing their structural design. SSI under seismic condition involves much more complex interaction with soil 

compared to the dynamic loads having source on the structure. Seismic SSI analysis requires due consideration of site-

specific and structure-specific properties to estimate the actual ground motion (scattered motion) experienced at the 

base of the structure, and subsequently the effects of the scattered motion on the structure. Most challenging aspect of 

seismic SSI analysis is to implement transmitting boundaries that absorb the artificial reflections of stress waves at the 

truncated interface of the finite and infinite domains, while allowing the seismic waves to enter the finite domain. In 

this paper, the time domain implementation of seismic analysis of a soil-structure system is presented using classical 

discrete models of structure and interactive force boundary conditions for soil. These models represent typical SSI 

systems- a single Degree of Freedom (DOF) of a spherical cavity with mass attached to its wall, a two DOF system 

consisting of a mass attached by a nonlinear spring to a semi-infinite rod on elastic foundation, and a three DOF system 

with additional DOFs for modelling the structural stiffness and damping.  The convolution integral representing the 

force boundary condition on the truncated interface, is evaluated interactively using UAMP user-subroutine in 

ABAQUS and applied as concentrated forces at the interface (truncated interface) nodes of the bounded domain or 

generalized-structure domain. The verification problems presented in the paper show the satisfactory performance of 

the developed MATLAB code and ABAQUS implementation with FORTRAN user-subroutines. The classical 

phenomena associated with the dynamic soil-structure systems are discussed through the present work. 

 

Keywords- Soil-structure interaction, Seismic analysis, Transmitting boundaries, ABAQUS, UAMP subroutine. 

 

 

 

1. Introduction 
The accuracy, and thus the usefulness, of a dynamic Soil-Structure Interaction (SSI) analysis 

depend on the ability to model the boundary at the truncated interface of the finite geometry 

(bounded domain) and the semi-infinite geometries (unbounded domain). The frequency 

dependence of the stiffness of the unbounded domain along with the stress waves and their 

multiple reflections makes the modelling of this domain the most challenging part. Although 

classical solutions of this SSI problem are obtained either in the frequency domain (Emani and 

Maheshwari, 2009; Spyrakos and Xu, 2003; Wolf, 1985), or hybrid domain (Emani and 

Maheshwari, 2010; Maheshwari and Emani, 2015), the dynamic analysis is intuitively done only 

in time domain using the numerical integration of the equations of motion. The displacement 

boundary conditions are highly inappropriate at the truncated interface since such boundaries 

cause considerable reflection of waves leading to chaotic results in the finite geometry (Kramer, 
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1996). So, a time domain implementation of the (interaction-) force boundary condition is needed 

motion (Sarkar and Maheshwari, 2012; Solberg et al., 2016; Wegner et al., 2005; Wolf and Song, 

1996). That method which can integrate with the well-developed state-of-the-art finite element 

(FE) solvers like ABAQUS will be of special significance. Recently, researchers are using user 

subroutines to achieve customization of FE solvers for SSI analysis (Poul and Zerva, 2018; Wang 

and Yang, 2013). In the following section the results for three representative soil-structure 

systems- one modelled as a single DOF, another as 2DOF and one other system modelled as 

3DOF are presented. The implementation in all three cases is done using UAMP user subroutine 

in ABAQUS. 

 

2. Formulations of System and Method of Analysis  
Classically a SSI system is modelled as a finite domain with the effect of the truncated soil 

accounted through an interactive force applied at the truncated interface called as “soil structure 

interface”. Basic equation of motion for such a system in time domain is given by Eq. (1) (Wolf, 

1988) 

 

[
[𝑀𝑠𝑠] [𝑀𝑠𝑏]

[𝑀𝑏𝑠] [𝑀𝑏𝑏]
] {

{�̈�𝑠
𝑡(𝑡)}

{�̈�𝑏
𝑡 (𝑡)}

} + {
{𝑃𝑠(𝑡)}

{𝑃𝑏(𝑡)}
} = {

{0}
{𝑅𝑏(𝑡)}

} (1) 

 

where [𝑀]is the partitioned form of mass matrix at the structure nodes (with subscript ss) and at 

the interface nodes (subscript bb) of the finite domain, {𝑃(𝑡)} is the partitioned internal force 

vector as a function of time 𝑡. The soil-structure interaction force vector {𝑅𝑏(𝑡)} is obtained from 

convolution integral of unit displacement impulse response (or dynamic stiffness matrix in time 

domain) [𝑆𝑏𝑏(𝑡)] of the truncated unbounded domain, and the relative motion at the 

interface({𝑢𝑏
𝑡 (𝜏)} − {𝑢𝑏

𝑔(𝜏)}), as in Eq. (2) 

 

{𝑅𝑏(𝑡)} = ∫ ([𝑆𝑏𝑏(𝑡 − 𝜏)]({𝑢𝑏
𝑡 (𝜏)} − {𝑢𝑏

𝑔(𝜏)})𝑑𝜏 
𝑡

0

 
(2) 

 

In time domain, the dynamic stiffness matrix of truncated unbounded domain has a general form 

given in Eq. (3) 

 

[𝑆𝑏𝑏(𝑡)] = [𝐾𝑏𝑏
𝑔

]𝛿(𝑡) + [𝐶𝑏𝑏
𝑔

]�̇�(𝑡) + [𝑆𝑟,𝑏𝑏
𝑔 (𝑡)] (3) 

 

Where[𝑘𝑏𝑏
𝑔

], [𝑐𝑏𝑏
𝑔

] are the constant stiffness and damping matrices components of the asymptotic 

(or high frequency) values of the dynamic stiffness matrix, and [𝑆𝑟,𝑏𝑏
𝑔 (𝑡)] is the remaining or 

regular part. 

 

On substituting Eq. (3) in Eq. (2) 

 

𝑅𝑏(𝑡) = [𝐾𝑏𝑏
𝑔

]({𝑢𝑏
𝑡 (𝑡)} − {𝑢𝑏

𝑔(𝑡)}) + [𝐶𝑏𝑏
𝑔

]({�̇�𝑏
𝑡 (𝑡)} − {�̇�𝑏

𝑔(𝑡)})

+ ∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏]

𝑡

0

 
(4) 

 

After time discretization as per Newmark- time integration scheme with implicit algorithm, the 

Eq. (4), at time step 𝑡 = 𝑛Δ𝑡 becomes 
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𝑅𝑏(𝑡) = [𝐾𝑏𝑏
𝑔

] ({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
) + [𝐶𝑏𝑏

𝑔
] ({�̇�𝑏

𝑡 }𝑛 − {�̇�𝑏
𝑔

}
𝑛

)

+ ∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏]

𝑛Δ𝑡

0

 
(5) 

 

The basic equations of Newmark time integration method for determining total displacements and 

velocities of the soil-structure interaction nodes ‘b’ at current time step are 

 

{𝑢𝑏
𝑡 }𝑛={𝑢𝑏

𝑡 }𝑛−1 + Δ𝑡 {�̇�𝑏
𝑡 }𝑛−1 + (

1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1 + 𝛽Δ𝑡2{�̈�𝑏
𝑡 }𝑛 (6) 

 

 

{�̇�𝑏
𝑡 }𝑛 = {�̇�𝑏

𝑡 }𝑛−1 + (1 − 𝛾)Δ𝑡{�̈�𝑏
𝑡 }𝑛−1 + 𝛾Δ𝑡 {�̈�𝑏

𝑡 }𝑛 (7) 

 

Using Eq. (6), (7), the velocities {�̇�𝑏
𝑡 }𝑛 and accelerations {�̈�𝑏

𝑡 }𝑛 at current step can be expressed in 

terms of displacements {𝑢𝑏
𝑡 }𝑛 at 𝑡 = 𝑛Δ𝑡.  

 

{�̈�𝑏
𝑡 }𝑛 =

1

𝛽Δ𝑡2 [{𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑡 }𝑛−1−Δ𝑡{�̇�𝑏
𝑡 }𝑛−1 − (

1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1] 

 

(8) 

 

{�̇�𝑏
𝑡 }𝑛 = {�̇�𝑏

𝑡 }𝑛−1 + (1 − 𝛾)Δ𝑡{�̈�𝑏
𝑡 }𝑛−1

+
𝛾

𝛽Δ𝑡
[{𝑢𝑏

𝑡 }𝑛 − {𝑢𝑏
𝑡 }𝑛−1−Δ𝑡{�̇�𝑏

𝑡 }𝑛−1 − (
1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1]  
(9) 

 

On substituting Eq. (8) and Eq. (9) in Eq. (5) 

 

𝑅𝑏(𝑡) = [𝐾𝑏𝑏
𝑔

] ({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
)

+ [𝐶𝑏𝑏
𝑔

] ({�̇�𝑏
𝑡 }𝑛−1 + (1 − 𝛾)Δ𝑡{�̈�𝑏

𝑡 }𝑛−1

+
𝛾

𝛽Δ𝑡
[{𝑢𝑏

𝑡 }𝑛 − {𝑢𝑏
𝑡 }𝑛−1−Δ𝑡{�̇�𝑏

𝑡 }𝑛−1 − (
1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1]

− {�̇�𝑏
𝑔

}
𝑛

) + ∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏]

𝑛Δ𝑡

0

 

(10) 

 

The convolution integral in Eq. (10) can be evaluated by using dynamic stiffness matrix of 

frequency domain through Fourier Transform operations, as follows  

 

∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏]

𝑛Δ𝑡

0

= 𝑅1 + 𝑅2 

 

(11) 

 

𝑅1 = ∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)]({𝑢𝑏

𝑡 (𝜏)} −
(𝑛−1)Δ𝑡

0

{𝑢𝑏
𝑔(𝜏)})

=
1

𝑇
∑ [𝑆𝑟,𝑏𝑏

𝑔
(𝜔𝑗)] (∫ ({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑒−𝑖𝜔𝑗𝜏𝑑𝜏 

(𝑛−1)Δ𝑡

0

)

∞

𝑗=−∞

𝑒𝑖𝜔𝑗𝑡 

(12) 
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𝑅2 = ∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)]({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏

𝑛Δ𝑡

(𝑛−1)Δ𝑡

= [𝑆𝑟,𝑏𝑏
𝑔

]
1

∗
({𝑢𝑏

𝑡 }𝑛−1 − {𝑢𝑏
𝑔

}
𝑛−1

) + [𝑆𝑟,𝑏𝑏
𝑔

]
0

({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
) 

(13) 

 

where  

[𝑆𝑟,𝑏𝑏
𝑔

]
1

∗
= ∫ (1 −

𝜏′

Δ𝑡
) [𝑆𝑟,𝑏𝑏

𝑔 (Δ𝑡 − 𝜏′)]𝑑𝜏′
Δ𝑡

0

 

 

(14) 

[𝑆𝑟,𝑏𝑏
𝑔

]
0

= ∫ (
𝜏′

Δ𝑡
) [𝑆𝑟,𝑏𝑏

𝑔 (Δ𝑡 − 𝜏′)]𝑑𝜏′
Δ𝑡

0

 
(15) 

 

On substituting back Eq. (14) and Eq. (15) in Eq. (13), then Eq. (13) in Eq. (11), then Eq. (12) in 

Eq. (11), then Eq. (11) in Eq. (25), the formulation can be reduced to  

 

[�̃�𝑏𝑏]{𝑢𝑏
𝑡 }𝑛 = {�̃�𝑏} (16) 

 

where the effective stiffness [�̃�𝑏𝑏] and effective force {�̃�𝑏} are given in Eq. (17) and Eq. (18) 

 

[�̃�𝑏𝑏] =
1

𝛽Δ𝑡2
[𝑀𝑏𝑏]+[𝐾𝑏𝑏

𝑔
]+

𝛾

𝛽Δ𝑡 
[𝐶𝑏𝑏

𝑔
] + [𝑆𝑟,𝑏𝑏

𝑔
]

0
  

 
(17) 

{�̃�𝑏} =
1

𝛽Δ𝑡2
[𝑀𝑏𝑏]({𝑢𝑏

𝑡 }𝑛−1+Δ𝑡{�̇�𝑏
𝑡 }𝑛−1 + (

1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1)+[𝐾𝑏𝑏
𝑔

] ({𝑢𝑏
𝑔

}
𝑛

) −

[𝐶𝑏𝑏
𝑔

] ({�̇�𝑏
𝑡 }𝑛−1 + (1 − 𝛾)Δ𝑡{�̈�𝑏

𝑡 }𝑛−1 +
𝛾

𝛽Δ𝑡
[−{𝑢𝑏

𝑡 }𝑛−1−Δ𝑡{�̇�𝑏
𝑡 }𝑛−1 − (

1

2
−

𝛽) Δ𝑡2{�̈�𝑏
𝑡 }𝑛−1] − {�̇�𝑏

𝑔
}

𝑛
) + [𝑆𝑟,𝑏𝑏

𝑔
]

0
{𝑢𝑏

𝑔
}

𝑛
−𝑅1 − [𝑆𝑟,𝑏𝑏

𝑔
]

1

∗
({𝑢𝑏

𝑡 }𝑛−1 − {𝑢𝑏
𝑔

}
𝑛−1

) 

(18) 

 

Alternative to the process described from Eq. (11) to Eq. (14), the convolution integral can also 

be evaluated using displacement impulse response (or dynamic stiffness in time domain) as 

follows  

 

∫ [𝑆𝑟,𝑏𝑏
𝑔 (𝑡 − 𝜏)({𝑢𝑏

𝑡 (𝜏)} − {𝑢𝑏
𝑔(𝜏)})𝑑𝜏]

𝑛Δ𝑡

0

= 𝑅1 + 𝑅2 

 

(19) 

𝑅1 = ∑[𝑆𝑟,𝑏𝑏
𝑔

]
𝑛−𝑖

({𝑢𝑏
𝑡 }𝑖 − {𝑢𝑏

𝑔
}

𝑖
)

𝑛−1

𝑖=1

 

 

(20) 

𝑅2 = [𝑆𝑟,𝑏𝑏
𝑔

]
0

({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
) (21) 

where [𝑆𝑟,𝑏𝑏
𝑔

]
𝑛−𝑖

 is given by Eq. (22) and Eq. (23), while [𝑆𝑟,𝑏𝑏
𝑔

]
0
is similar to Eq. (15). 

 

[𝑆𝑟,𝑏𝑏
𝑔

]
𝑛−𝑖

= 𝐼1 + 𝐼2  (22) 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 3, 447-462, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.3.037 

451 

𝐼1 = ∫
𝜏′

Δ𝑡
[𝑆𝑟,𝑏𝑏

𝑔
((𝑛 − 𝑖 + 1) Δ𝑡 − 𝜏′)] 𝑑𝜏′

Δ𝑡

0

 

 

(23) 

𝐼2 = ∫ (1 −
𝜏′

Δ𝑡
) [𝑆𝑟,𝑏𝑏

𝑔
((𝑛 − 𝑖) Δ𝑡 − 𝜏′)] 𝑑𝜏′

Δ𝑡

0

 (24) 

 

On substituting back into the equation of motion Eq. (1) the formulation can be reduced to Eq. 

(16) and can be solved for total displacements. Using Eq. (7) and Eq. (8), the total velocities and 

accelerations are also evaluated subsequently.  

 

3. Flow Chart 
The flow chart in 

Figure 1 depicts the implementation of the above equations in a programming language. In the 

present work, MATLAB is used for this purpose. 

 

 

 
 

Figure 1. Flow chart of analysis of SSI system for EQ base excitation 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 3, 447-462, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.3.037 

452 

4. Implementation in ABAQUS 
ABAQUS is general purpose Finite Element software by Dessault systems. The procedure 

described in the previous section can also be implemented in ABAQUS using an implicit 

dynamic analysis step. In this case, the time discretization (involving the Newmark’s integration 

parameters, namely, γ and β) is internally performed by ABAQUS. Thus, only the terms 

involving convolution integral and the ground motion are to be considered in the interaction 

forces, which shall act on a fixed base system. This results in the solution in total displacements, 

velocities and accelerations. 

 

The calculation of convolution integral in ABAQUS needs an interactive procedure at each 

increment of the dynamic step. This is because the convolution integral term of the applied 

interaction forces at any increment depends on the displacements, velocities and accelerations at 

all the previous steps. For this, sensors are created for displacements, velocities and accelerations 

at the SSI nodes. Using the sensor data at each step, the convolution terms and thus the total 

interaction forces on SSI nodes are calculated by a user subroutine UAMP. The UAMP 

subroutine is coded in FORTRAN 77 for calculating the interaction forces at each time 

increment. These forces when applied to the fixed base structure give the total displacements, 

velocities and accelerations at all nodes of the model. These steps are summarized in  

Table 1. 
 

Table 1. Summary of steps involved in time domain implementation 
 

Description of the Step Implementation 

Platform  

Equation numbers 

SDOF 2DOF 3DOF 

Modelling the structure without any foundation (or support)   ABAQUS Eq. (1), (25)  Eq. (1) Eq. (1) 

Evaluating or importing the dynamic stiffness coefficients of 

the foundation in frequency domain 

 MATLAB 

Eq. (29) 

Eq. (35-(36) Eq. (40),(41) 

Resolving the dynamic stiffness coefficients into singular and 
regular parts 

MATLAB Eq. (37) -- 

Transforming the regular part into time domain using inverse 

Fourier transform 

MATLAB. Eq. (3), (26)-

(28)  

Eq. (38),(39) IFFT 

Evaluating the continuous convolution integral of regular part 
between the time steps for all time steps (either analytically or 

numerically)  

MATLAB 
Eq. (14), (15) or Eq. (22), (23), (24). 

Eq. (30), 
(31) 

Numerical integration 

The total displacements of base DOF at all previous time steps 
(state data) are obtained from sensor data 

ABAQUS Using state variables svars(n) of previous time 
steps 

Performing discrete convolution (summation for all steps till the 

time step previous to current step) to get the amplitude of 
interaction forces to be applied at the base nodes.  

FORTRAN 

subroutine 
UAMP 

Eq. (19), (20), (21) 

Eq. (32) Numerically 

Adding the contribution of known terms of the convolution 
integral term (in the current time step) to the interaction forces 

 FORTRAN 
subroutine 

UAMP 

Eq. (18) 

Eq. (32) Numerically 

Adding the contribution of unknown terms to the LHS of the 

equation of motion. This leads to additional stiffness and 
damping to the system at the base. These values are assigned to 

the connector at the base 

 ABAQUS Eq. (17). In case of ABAQUS solver the first 

term of Eq. (17) is implicitly considered, 
while the other three terms form spring and 

dashpot values.  

Eq. (32) Numerically 

Solving the equation of motion to get the accelerations, total 

displacements, and total velocities at all DOF of the model  

ABAQUS/ 

MATLAB 

Eq. (16) when using MATLAB for solution or 

Eq. (1) when using ABAQUS for solution 
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5. Analysis of SDOF Soil-Structure Interaction (SSI) System 
In the simplest possible system representing general features of SSI, a mass 𝑚 is attached to a 

spherical cavity of radius 𝑎 and subjected to symmetric (radial) stress waves. The medium has a 

shear modulus of 𝐺, mass density of 𝜌 and Poisson’s ratio of 𝜈. Such a system can be modelled as 

a SDOF system with mass supported by frequency dependent springs as shown in  
(a) (b) 

 

Figure 2.  This SDOF system is analysed (using the procedure formulated in previous section) 

under symmetric ground excitation 𝑢𝑏
𝑔

 to obtain the total displacement response history 𝑢𝑡 of the 

mass. 

 
(a) (b) 

 

Figure 2. (a) and (b) Mass attached to spherical cavity and its idealized SDOF system 

 

 

In the present SDOF SSI system, namely the mass attached to spherical cavity, basic equation of 

motion is given by Eq. (25) 

 

𝑚�̈�𝑏
𝑡 (𝑡) + 𝑅𝑏(𝑡) = 0 (25) 

 

Where the soil-structure interaction force 𝑅𝑏(𝑡) is obtained from convolution integral of Unit 

displacement impulse response (or dynamic stiffness coefficient in time domain) 𝑆𝑏𝑏(𝑡) and the 

relative motion of the base ({𝑢𝑏
𝑡 (𝜏)} − {𝑢𝑏

𝑔(𝜏)}), as in Eq. (2). The components of 𝑆𝑏𝑏(𝑡) in this 

case are given by Eq. (26) to Eq. (28).  

 

 

[𝑘𝑏𝑏
𝑔

] = 𝐾 (1 −
𝑐𝑝

2

4𝑐𝑠
2) 

 

(26) 
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[𝑐𝑏𝑏
𝑔

] = 𝐾
𝑎

𝑐𝑝
(

𝑐𝑝
2

4𝑐𝑠
2) 

 

(27) 

[𝑆𝑟,𝑏𝑏
𝑔 (𝑡)] = 𝐾

𝑐𝑝

𝑎
(

𝑐𝑝
2

4𝑐𝑠
2  𝑒−

𝑡𝑐𝑝

𝑎 ) 
(28) 

 

Here 𝑐𝑝, 𝑐𝑠 represent the P-wave and S-wave velocities in the medium respectively, and 𝐾 is the 

static stiffness value of the spherical cavity.  The regular part of dynamic stiffness in frequency 

domain is given by Eq. (29) 

 

[𝑆𝑟,𝑏𝑏
𝑔

(𝜔𝑗)] = 𝐾
𝑐𝑝

2

4𝑐𝑠
2

1

1 +
𝑖𝜔𝑎
𝑐𝑝

 
(29) 

   

Eq. (14) and Eq. (15) can be used to derive the following expressions for [𝑆𝑟,𝑏𝑏
𝑔

]
1

∗
 and [𝑆𝑟,𝑏𝑏

𝑔
]

0
 

 

[𝑆𝑟,𝑏𝑏
𝑔

]
1

∗
= 𝐾

𝑐𝑝
2

4𝑐𝑠
2

1

Δ𝑡
 [

𝑎

𝑐𝑝
− (Δ𝑡 +

𝑎

𝑐𝑝
) 𝑒−

Δ𝑡𝑐𝑝

𝑎 ]  

 

(30) 

[𝑆𝑟,𝑏𝑏
𝑔

]
0

= 𝐾
𝑐𝑝

2

4𝑐𝑠
2

1

Δ𝑡
[Δ𝑡 −

𝑎

𝑐𝑝
(1 − 𝑒−

Δ𝑡𝑐𝑝

𝑎  )] (31) 

 

Eq. (16) for the present case becomes Eq. (32) 

 

𝑚
1

𝛽Δ𝑡2 [{𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑡 }𝑛−1−Δ𝑡{�̇�𝑏
𝑡 }𝑛−1 − (

1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1]

+ [𝐾𝑏𝑏
𝑔

] ({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
)

+ [𝐶𝑏𝑏
𝑔

] ({�̇�𝑏
𝑡 }𝑛−1 + (1 − 𝛾)Δ𝑡{�̈�𝑏

𝑡 }𝑛−1

+
𝛾

𝛽Δ𝑡
[{𝑢𝑏

𝑡 }𝑛 − {𝑢𝑏
𝑡 }𝑛−1−Δ𝑡{�̇�𝑏

𝑡 }𝑛−1 − (
1

2
− 𝛽) Δ𝑡2{�̈�𝑏

𝑡 }𝑛−1]

− {�̇�𝑏
𝑔

}
𝑛

) +  𝑅1 + [𝑆𝑟,𝑏𝑏
𝑔

]
1

∗
({𝑢𝑏

𝑡 }𝑛−1 − {𝑢𝑏
𝑔

}
𝑛−1

)

+ [𝑆𝑟,𝑏𝑏
𝑔

]
0

({𝑢𝑏
𝑡 }𝑛 − {𝑢𝑏

𝑔
}

𝑛
)  = 0 

(32) 

 

For the alternative procedure described by Eq. (19) to Eq. (24), the following expressions are 

derived  

 

𝐼1 = 𝐾
𝑐𝑝

2

4𝑐𝑠
2

1

Δ𝑡
 [𝑒Δ𝑡(−𝑛+𝑖)

𝑐𝑝

𝑎  (Δ𝑡 −
𝑎

𝑐𝑝
) +

𝑎

𝑐𝑝
𝑒−𝑛′𝛥𝑡 

𝑐𝑝

𝑎  ] 

 

(33) 

𝐼2 = 𝐾
𝑐𝑝

2

4𝑐𝑠
2  [𝑒Δ𝑡(−𝑛+𝑖)

𝑐𝑝

𝑎  (
1

Δ𝑡

𝑎

𝑐𝑝
 𝑒Δ𝑡

𝑐𝑝

𝑎 − 1 −
1

Δ𝑡

𝑎

𝑐𝑝
 ) ] (34) 
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Figure 3. (a) Input ground motion, (b) Acceleration response of the mass attached to spherical cavity under 

symmetric P-wave loading 

 

 

The verification of the developed code and its implementation is checked for an artificial 

earthquake used by Wolf (1988). The ground motion {𝑢𝑏
𝑔(𝑡)}, {�̇�𝑏

𝑔(𝑡)} and the response in terms 

of the total acceleration of the mass are shown in the Figure 3. The ABAQUS implementation 

matches the result from MATLAB programme indicating that there are no hidden errors in 

implementation. The minor discrepancy in the result compared to the result reported by Wolf, 

1988 is the sight numerical errors in digitizing the input ground motion used by Wolf, 1988. 

 

The formulation and its implementation in MATLAB and ABAQUS are, thus, verified using the 

single DOF system of spherical cavity. The same procedure can be applied for any general soil-

structure system. The soil modelling can be either continuum or discrete. 

 

6. Analysis of 2DOF System 
The selected system is a mass (𝑚) connected by a nonlinear spring (of stiffness 𝑘𝑠 and to a semi-

infinite rod on elastic foundation (Figure 4 (a)). The mass and non-linear spring represents the 

structure and the semi-infinite rod represents the foundation-soil. The dynamic stiffness 

coefficient of semi-infinite rod and the expressions for the interaction force history 𝑅𝑏 (𝑡) in 

terms of convolution integral are given in Eq. (35) to Eq. (39). Here E is the elastic modulus of 

the soil, A is the cross-sectional area of the rod, 𝑘𝑔is the elastic stiffness of the soil per unit length 

of the rod. The terms of 𝑅𝑏(𝑡) containing current (unknown) displacements {𝑢𝑏
𝑡 }𝑛 and unknown 

velocities {�̇�𝑏
𝑡 }𝑛 will contribute to the stiffness [𝐾𝑏𝑏

𝑔
] and [𝐶𝑏𝑏

𝑔
] of the foundation-soil system (Eq. 

(18), Eq. (39). The remaining known terms of the convolution integral shall be calculated in 

ABAQUS using user-defined UAMP subroutine, and the corresponding amplitude is used to 

apply a concentrated force on mass 𝑚0. Thus, the SSI system reduces to a fixed-base 2DOF 

dynamic system as shown in Figure 4 (b), where the ground motion is replaced by equivalent 

interaction force 𝑅𝑏(𝑡).  The two degrees of freedom are the (total) displacements of the two 

masses 𝑢𝑠
𝑡 and 𝑢0

𝑡 . The numerical properties of the system are as detailed in Table 2. In this case, 

the dynamics stiffness matrix of the foundation is a scalar value since there is only one DOF at 

the soil structure interface. The formulation is given by Eq. (35)-Eq. (39). 

(a) (b) 
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(a) (b) 

 

Figure 4.  (a) and (b) 2DOF representing mass attached to a semi-infinite rod on elastic foundation 

 

 

𝑆(𝑎0) = 𝐾𝑖√(𝑎0
2 − 1)   (35) 

where 𝐾 = √𝐸𝐴𝑘𝑔and 𝑎0 =
𝜔

𝑐𝑙𝜅
 , 𝜅 = √

𝑘𝑔

𝐸𝐴
 

 

(36) 

𝑆(𝑎0) = 𝐾𝑖𝑎0 + 𝐾𝑖 (√(𝑎0
2 − 1) − 𝑎0)  

 

(37) 

𝑆𝑏𝑏(𝑡) = 𝐾 (
�̇�(𝑡)

𝑐𝑙𝜅
+

𝐽1(𝑡𝑐𝑙𝜅)

𝑡
) 

(38) 

 

So that , 𝐾𝑏𝑏
𝑔

= 0 ,  𝐶𝑏𝑏
𝑔

=
𝐾

𝑐𝑙𝜅
 and 𝑆𝑟,𝑏𝑏(𝑡) = 𝐾

𝐽1(𝑡𝑐𝑙𝜅)

𝑡
 (39) 

 

 

The system is subjected to an artificial time history, whose displacement and velocity histories 

are shown in Figure 5 (a). The system on being solved for the seismic response gives an accurate 

response as can be seen in Figure 5 (b). From the figure, it can also be observed that there is a 

permanent deformation caused by the elastic-perfect plastic nonlinearity of the structure spring. 
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Table 2. Parameters for 2DOF system (Wolf, 1988) 

 
Parameters assumed Dimensionless 

parameters assumed 

Parameters calculated  

𝜌 = 1.5 𝑡/𝑚3 

𝐸 = 6.0 × 106 𝑘𝑁/𝑚2 

𝐴 = 0.6667 𝑚2 

𝑘𝑔 = 1.0 × 102𝑘𝑁/𝑚2  

𝑢0,𝑚𝑎𝑥
𝑔

= 0.030889 𝑚 

 
 

𝑘𝑠

𝐾
= 1 

𝑚𝑠𝜅

𝜌𝐴
= 0.5 

𝑐
𝑐𝑙𝜅

2𝐾
= 0.3 

𝑚0

𝑚𝑠

= 0.5 

𝐹𝑦

𝑘𝑠𝑢𝑜
𝑔 =

1

6
 

𝑡̅ = 𝑡 𝑐𝑙𝜅 

𝑑𝑡̅ = 0.1 

𝐾 = √𝐸𝐴𝑘𝑔 = 20000 𝑘𝑁/𝑚 

𝜅 = √
𝑘𝑔

𝐸𝐴
= 0.005 /𝑚  

𝑐𝑙 = √
𝐸

𝜌
= 2000 𝑚/𝑠 

𝑚𝑠 = 100 

𝑚0 = 50 

𝑐 = 1200 𝑘𝑁 − 𝑠/𝑚  
𝐹𝑦 = 102.9633 𝑘𝑁 

𝐶𝑏𝑏
𝑔

=
𝐾

𝑐𝑙𝜅
= 2000 𝑘𝑁 − 𝑠/𝑚 

𝑑𝑡 = 0.01 𝑠 

[𝑆𝑟,𝑏𝑏
𝑔

]
0

= 500.  𝑘𝑁/𝑚  

 

 

 
 

(a) (b) 

 

Figure 5. (a) Ground motion displacement and velocity, (b) comparison of displacement history of mass 𝑚𝑠 

with benchmark result 

 

 

7. Analysis of 3DOF SSI System  
The system consists of a mass-spring-damper combination representing the dynamic properties of 

a structure, mounted on a rigid column of height ‘h’. This column is supported by a roller which 

represents a rigid ground in vertical direction. The horizontal translational and rotational degrees 

of freedom at the bottom of the column structure are governed by the corresponding components 

of foundation elasticity and damping. For the analysis purpose a foundation consisting of a rigid 

circular disk on an elastic half-space is considered. From the Figure 6, it can be noted that there 

are three degrees of freedom for the whole system- horizontal degree of freedom of the structure 

mass ‘m’, the horizontal and rotational degrees of freedom of the foundation. The input values of 

the parameters and the expressions used to calculate the derived input values are shown in Table 

3. Here, 𝑘𝑠 is the stiffness of the structure spring, 𝜁 is the structural damping ratio, 𝑚 is the 

 Nonlinear structure 

spring 

𝐹𝑦 

𝑢 

𝐹 
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structure mass, 𝑎 is the radius of the rigid circular disk foundation, 𝐺, 𝜌, 𝜈, 𝜁𝑔 are the shear 

moduli, mass density, Poisson ratio, damping ratio of the soil respectively.  

 

 

 

Figure 6. Three-DOF dynamic system representing SSI 

 

The stiffness and damping values of foundation-soil system are obtained for a rigid circular disk 

of radius ‘a’, resting on a ground/ soil having a shear modulus of ‘G’, density of ‘ρ’, Poisson ratio 

of ‘ν’, material damping constant of ‘ςg’ This procedure is described in (Wolf, 1985) and the 

coefficients are shown in Figure 7 for horizontal and rocking components. 

 

High frequency behaviour of rigid circular base mat resting on the surface of a layered half-space 

are (Wolf, 1988) 

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙:          𝑆𝑏𝑏,𝑥
∞ (𝑎0) = 𝜋𝐺𝑎 𝑖𝑎0 

 
(40) 

𝑅𝑜𝑐𝑘𝑖𝑛𝑔 ∶         𝑆𝑏𝑏,𝜙
∞ (𝑎0) =

𝜋𝐺

4
 √

2(1 − 𝜈)

1 − 2𝜈
 𝑎3 𝑖𝑎0 (41) 

 

This forms the singular part of the dynamic stiffness coefficient. The regular part of the dynamic 

stiffness coefficient of a rigid circular disk or base mat resting on an undamped half-space can be 

obtained by separating the singular part from the dynamic stiffness coefficients shown in Figure 

7. 
 

From the singular part of dynamic stiffness coefficients the initial value (i.e., at t = 0+) of the 

coefficient in time domain can be obtained. The regular part of dynamic stiffness coefficient is 

transformed to time domain using numerical Fourier transform to get 𝑆𝑟,𝑏𝑏
𝑔 (𝑡). The system can 

then be modelled in ABAQUS into a three DOF system shown in Figure 8. It is subjected to 

artificial earthquake ground motion described in the previous section (Figure 5). The results are 

shown in Figure 9 and Figure 10. Figure 9 gives the displacement history at base and structure 

mass, as well as the rotation at the base. It can be seen that the displacement response is 

considerably reduced with respect to the (free-field) ground motion in Figure 5. This is due to the 

high stiffness of soil. Further, the displacement of structural mass is quite magnified from that at 
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the base. This is bound to happen for the selected 𝑆̅ = 0.1, which means that the structure is quite 

flexible compared to the foundation stiffness. It can also be seen that the rotation of the base is 

quite negligible. 
 

 

Table 3. Parameters defining the 3DOF dynamic system 
 

Parameters assumed Parameters calculated  

a=1.0 m 

 

ρ=1.5 t/m3 

 

G=10000 kN/m2 

 

ν =0.3333 

 
ς=0.025 

 

ςg=0.05 
 

h=0.67 m, m=4.5t, cs=81.65 m/s , 𝑑𝑡 = 0.01 𝑠 

 

𝑘𝑠 = 𝑠̅2𝑚 (
𝑐𝑠

ℎ
)

2

= 668.3  kN/m 

 

𝐾𝑥 =
8𝐺𝑎

2−𝜈
= 48000 kN/m, 𝐶𝑥 =

4.6

2−𝜈
𝜌𝑐𝑠𝑎2 = 338 kN-s/m 

 

𝐾𝜙 =
8𝐺𝑎3

3(1−𝜈)
= 4 × 104 kN per rad, 𝐶𝜙 =

0.4

1−𝜈 
𝜌𝑐𝑠𝑎4 = 73.485 kN per rad 

 

{𝑆𝑏𝑏
∞ } = [𝐾𝑏𝑏

𝑔
] + 𝑖𝑎0[𝐶𝑏𝑏

𝑔
] = {

𝜋𝐺𝑎𝑖𝑎0

𝜋

4
𝐺√

2(1−𝜈)

1−2𝜈
𝑎3𝑖𝑎0

}, (Wolf 1988) 

 

[𝐶𝑏𝑏
𝑔

] = [
31416 0

0 15708
]  𝑘𝑁 − 𝑠/𝑚,  𝐾𝑏𝑏

𝑔
= [

0 0
0 0

] 𝑘𝑁/𝑚 

 

[𝑆𝑟,𝑏𝑏
𝑔

]
0

= [
289.24 0

0 234.30
]  kN/m,  

 

[𝐾𝑏𝑏
𝑔

] + [𝑆𝑟,𝑏𝑏
𝑔

]
0

= [
289.24 0

0 234.30
] kN/m 

Dimensionless parameters 
assumed 

�̅� =
𝒘𝒔𝒉

𝒄𝒔

= 𝟎. 𝟏  

 

�̅� =
𝒎

𝝆𝒂𝟑
= 𝟑. 𝟎 

 

�̅� =
𝒉

𝒂
= 𝟎. 𝟔𝟕 

 

 

 

                        
(a) (b) 

 

Figure 7. (a) and (b) Dynamic stiffness coefficients of rigid disk on half-space: spring & damping 

𝐾𝑥(𝑘𝑥 + 𝑖𝑎0𝑐𝑥) 

𝐾𝜙(𝑘𝜙 + 𝑖𝑎0𝑐𝜙) 

Horizontal 

 

 

 

Rocking 
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Figure 8. ABAQUS model of the dynamic system 

 

 

 

 
(a) (b) 

 

Figure 9. (a) and (b) Displacement time history of the 3DOF SSI system under EQ loading 

 

 

 

The internal force in structural connector is shown in Figure 10 (b) and the applied force at the 

base in shown in Figure 10 (a). The applied force is the interaction force calculated using the 

convolution integral through the UAMP subroutine. The structure-connector being quite flexible 

in relation to the foundation experiences very low internal force as can be seen in Figure 10. 

 

2 
3 

1. Axial + Rotational spring- 

CONN3D2 

2. Rigid link - MPC Beam 

3. Translator- CONN3D2 

4. Structure Mass- MASS 

4 
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(a) (b) 

 

Figure 10.  (a) Applied Force history at the base and (b) total force in Structure connector 

 

 

8. Conclusions 
The paper successfully presents steps for carrying out seismic analysis of three different SSI 

systems in time domain using ABAQUS software, wherein the user defined subroutine UAMP is 

programmed to interactively evaluate the soil structure interaction forces that ensure realistic 

transmitting boundaries. The procedure presented in the paper can be applied to continuum SSI 

models also. 
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