Skip to main content

Advertisement

Log in

Identification of potential glycoprotein biomarkers in oral squamous cell carcinoma using sweet strategies

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The prevalence of oral squamous cell carcinoma (OSCC) is high in South and Southeast Asia regions. Most OSCC patients are detected at advanced stages low 5-year survival rates. Aberrant expression of glycosylated proteins was found to be associated with malignant transformation and cancer progression. Hence, identification of cancer-associated glycoproteins could be used as potential biomarkers that are beneficial for diagnosis or clinical management of patients. This study aims to identify the differentially expressed glycoproteins using lectin-based glycoproteomics approaches. Serum samples of 40 patients with OSCC, 10 patients with oral potentially malignant disorder (OPMD), and 10 healthy individuals as control group were subjected to two-dimensional gel electrophoresis (2-DE) coupled with lectin Concanavalin A and Jacalin that specifically bind to N- and O-glycosylated proteins, respectively. Five differentially expressed N- and O-glycoproteins with various potential glycosylation sites were identified, namely N-glycosylated α1-antitrypsin (AAT), α2-HS-glycoprotein (AHSG), apolipoprotein A-I (APOA1), and haptoglobin (HP); as well as O-glycosylated AHSG and clusterin (CLU). Among them, AAT and APOA1 were further validated using enzyme-linked immunosorbent assay (ELISA) (n = 120). It was found that AAT and APOA1 are significantly upregulated in OSCC and these glycoproteins are independent risk factors of OSCC. The clinical utility of AAT and APOA1 as potential biomarkers of OSCC is needed for further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., et al.: Global cancer observatory: cancer today. Lyon, France, International Agency for Research on Cancer (2018)

    Google Scholar 

  2. Gupta, N., Gupta, R., Acharya, A.K., Patthi, B., Goud, V., Reddy, S., Garg, A., Singla, A.: Changing trends in oral cancer - a global scenario. Nepal J Epidemiol. 6, 613–619 (2016). https://doi.org/10.3126/nje.v6i4.17255

    Article  PubMed  PubMed Central  Google Scholar 

  3. Speight, P.M., Khurram, S.A., Kujan, O.: Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125, 612–627 (2018). https://doi.org/10.1016/j.oooo.2017.12.011

    Article  PubMed  Google Scholar 

  4. Johnson, N.W., Jayasekara, P., Amarasinghe, A.A.: Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol 2000. 57, 19–37 (2011). https://doi.org/10.1111/j.1600-0757.2011.00401.x

    Article  PubMed  Google Scholar 

  5. Warnakulasuriya, S.: Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45, 309–316 (2009). https://doi.org/10.1016/j.oraloncology.2008.06.002

    Article  PubMed  Google Scholar 

  6. Le Campion, A., Ribeiro, C.M.B., Luiz, R.R., da Silva Junior, F.F., Barros, H.C.S., Dos Santos, K.C.B., et al.: Low survival rates of oral and oropharyngeal squamous cell carcinoma. Int J Dent. 2017, 5815493–5815497 (2017). https://doi.org/10.1155/2017/5815493

    Article  PubMed  PubMed Central  Google Scholar 

  7. Montero, P.H., Patel, S.G.: Cancer of the oral cavity. Surg. Oncol. Clin. N. Am. 24, 491–508 (2015). https://doi.org/10.1016/j.soc.2015.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roth, Z., Yehezkel, G., Khalaila, I.: Identification and quantification of protein glycosylation. Int. J. Carbohydr. Chem. 2012, 1–10 (2012). https://doi.org/10.1155/2012/640923

    Article  CAS  Google Scholar 

  9. Munkley, J., Elliott, D.J.: Hallmarks of glycosylation in cancer. Oncotarget. 7, 35478–35489 (2016). https://doi.org/10.18632/oncotarget.8155

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stowell, S.R., Ju, T., Cummings, R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015). https://doi.org/10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawahara, R., Ortega, F., Rosa-Fernandes, L., Guimaraes, V., Quina, D., Nahas, W., et al.: Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget. 9, 33077–33097 (2018). https://doi.org/10.18632/oncotarget.26005

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan, S., Brentnall, T.A., Chen, R.: Glycoproteins and glycoproteomics in pancreatic cancer. World J. Gastroenterol. 22, 9288–9299 (2016). https://doi.org/10.3748/wjg.v22.i42.9288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, E., Mechref, Y.: Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark. Med. 9, 835–844 (2015). https://doi.org/10.2217/bmm.15.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kailemia, M.J., Park, D., Lebrilla, C.B.: Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 409, 395–410 (2017). https://doi.org/10.1007/s00216-016-9880-6

    Article  CAS  PubMed  Google Scholar 

  15. Lin, W.L., Lin, Y.S., Shi, G.Y., Chang, C.F., Wu, H.L.: Lewisy promotes migration of oral cancer cells by glycosylation of epidermal growth factor receptor. PLoS One. 10, e0120162 (2015). https://doi.org/10.1371/journal.pone.0120162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manoharan, S., Padmanabhan, M., Kolanjiappan, K., Ramachandran, C.R., Suresh, K.: Analysis of glycoconjugates in patients with oral squamous cell carcinoma. Clin. Chim. Acta. 339, 91–96 (2004). https://doi.org/10.1016/j.cccn.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  17. Liu, G., Sengupta, P.K., Jamal, B., Yang, H.Y., Bouchie, M.P., Lindner, V., Varelas, X., Kukuruzinska, M.A.: N-glycosylation induces the CTHRC1 protein and drives oral cancer cell migration. J. Biol. Chem. 288, 20217–20227 (2013). https://doi.org/10.1074/jbc.M113.473785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, M.C., Huang, M.J., Liu, C.H., Yang, T.L., Huang, M.C.: GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncol. 50, 478–484 (2014). https://doi.org/10.1016/j.oraloncology.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  19. Hashim, O.H., Jayapalan, J.J., Lee, C.S.: Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ. 5, e3784 (2017). https://doi.org/10.7717/peerj.3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y., Lim, B.K., Peh, S.C., Abdul-Rahman, P.S., Hashim, O.H.: Profiling of serum and tissue high abundance acute-phase proteins of patients with epithelial and germ line ovarian carcinoma. Proteome Sci. 6, 20 (2008). https://doi.org/10.1186/1477-5956-6-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015). https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  22. Chang, S.C., Lin, W.L., Chang, Y.F., Lee, C.T., Wu, J.S., Hsu, P.H., Chang, C.F.: Glycoproteomic identification of novel plasma biomarkers for oral cancer. J. Food Drug Anal. 27, 483–493 (2019). https://doi.org/10.1016/j.jfda.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J.T., Chen, C.H., Ku, K.L., Hsiao, M., Chiang, C.P., Hsu, T.L., Chen, M.H., Wong, C.H.: Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc. Natl. Acad. Sci. U. S. A. 112, 13057–13062 (2015). https://doi.org/10.1073/pnas.1516991112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Y.T., Chong, Y.M., Cheng, C.W., Ho, C.L., Tsai, H.W., Kasten, F.H., Chen, Y.L., Chang, C.F.: Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis. Clin. Chim. Acta. 420, 45–53 (2013). https://doi.org/10.1016/j.cca.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  25. Guu, S.Y., Lin, T.H., Chang, S.C., Wang, R.J., Hung, L.Y., Fang, P.J., Tang, W.C., Yu, P., Chang, C.F.: Serum N-glycome characterization and anti-carbohydrate antibody profiling in oral squamous cell carcinoma patients. PLoS One. 12, e0178927 (2017). https://doi.org/10.1371/journal.pone.0178927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saraswat, M., Makitie, A., Tohmola, T., Dickinson, A., Saraswat, S., Joenvaara, S., et al.: Tongue cancer patients can be distinguished from healthy controls by specific N-Glycopeptides found in serum. Proteomics Clin Appl. 12, e1800061 (2018). https://doi.org/10.1002/prca.201800061

    Article  CAS  PubMed  Google Scholar 

  27. Pan, S., Chen, R., Tamura, Y., Crispin, D.A., Lai, L.A., May, D.H., McIntosh, M.W., Goodlett, D.R., Brentnall, T.A.: Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma. J. Proteome Res. 13, 1293–1306 (2014). https://doi.org/10.1021/pr4010184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shah, P., Wang, X., Yang, W., Toghi Eshghi, S., Sun, S., Hoti, N., Chen, L., Yang, S., Pasay, J., Rubin, A., Zhang, H.: Integrated proteomic and Glycoproteomic analyses of prostate Cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Mol. Cell. Proteomics. 14, 2753–2763 (2015). https://doi.org/10.1074/mcp.M115.047928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clerc, F., Reiding, K.R., Jansen, B.C., Kammeijer, G.S., Bondt, A., Wuhrer, M.: Human plasma protein N-glycosylation. Glycoconj. J. 33, 309–343 (2016). https://doi.org/10.1007/s10719-015-9626-2

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez-Pineiro, A.M., de la Cadena, M.P., Lopez-Saco, A., Rodriguez-Berrocal, F.J.: Differential expression of serum clusterin isoforms in colorectal cancer. Mol. Cell. Proteomics. 5, 1647–1657 (2006). https://doi.org/10.1074/mcp.M600143-MCP200

    Article  CAS  PubMed  Google Scholar 

  31. Sarrats, A., Saldova, R., Pla, E., Fort, E., Harvey, D.J., Struwe, W.B., de Llorens, R., Rudd, P.M., Peracaula, R.: Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin Appl. 4, 432–448 (2010). https://doi.org/10.1002/prca.200900150

    Article  CAS  PubMed  Google Scholar 

  32. Wu, J., Xie, X., Nie, S., Buckanovich, R.J., Lubman, D.M.: Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J. Proteome Res. 12, 3342–3352 (2013). https://doi.org/10.1021/pr400169n

    Article  CAS  PubMed  Google Scholar 

  33. Chaerkady, R., Thuluvath, P.J., Kim, M.S., Nalli, A., Vivekanandan, P., Simmers, J., Torbenson, M., Pandey, A.: O Labeling for a quantitative proteomic analysis of glycoproteins in hepatocellular carcinoma. Clin. Proteomics. 4, 137–155 (2008). https://doi.org/10.1007/s12014-008-9013-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi, Y.J., Ward, D.G., Pang, C., Wang, Q.M., Wei, W., Ma, J., Zhang, J., Lou, Q., Shimwell, N.J., Martin, A., Wong, N., Chao, W.X., Wang, M., Ma, Y.F., Johnson, P.J.: Proteomic profiling of N-linked glycoproteins identifies ConA-binding procathepsin D as a novel serum biomarker for hepatocellular carcinoma. Proteomics. 14, 186–195 (2014). https://doi.org/10.1002/pmic.201300226

    Article  CAS  PubMed  Google Scholar 

  35. Liang, Y., Ma, T., Thakur, A., Yu, H., Gao, L., Shi, P., Li, X., Ren, H., Jia, L., Zhang, S., Li, Z., Chen, M.: Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. Glycobiology. 25, 331–340 (2015). https://doi.org/10.1093/glycob/cwu115

    Article  CAS  PubMed  Google Scholar 

  36. Semaan, S.M., Wang, X., Marshall, A.G., Sang, Q.X.: Identification of potential glycoprotein biomarkers in estrogen receptor positive (ER+) and negative (ER-) human breast cancer tissues by LC-LTQ/FT-ICR mass spectrometry. J. Cancer. 3, 269–284 (2012). https://doi.org/10.7150/jca.4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, N., Feng, S., Shedden, K., Xie, X., Liu, Y., Rosser, C.J., Lubman, D.M., Goodison, S.: Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin. Cancer Res. 17, 3349–3359 (2011). https://doi.org/10.1158/1078-0432.CCR-10-3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ercetin, E., Richtmann, S., Delgado, B.M., Gomez-Mariano, G., Wrenger, S., Korenbaum, E., et al.: Clinical significance of SERPINA1 gene and its encoded alpha1-antitrypsin protein in NSCLC. Cancers (Basel). 11, (2019). https://doi.org/10.3390/cancers11091306

  39. Zhao, Z., Ma, J., Mao, Y., Dong, L., Li, S., Zhang, Y.: Silence of alpha1-antitrypsin inhibits migration and proliferation of triple negative breast cancer cells. Med Sci Monit. 24, 6851–6860 (2018). https://doi.org/10.12659/MSM.910665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, Z., Yang, P.: Role of imbalance between neutrophil elastase and α1-antitrypsin in cancer development and progression. The lancet oncology. 5, 182–190 (2004). https://doi.org/10.1016/S1470-2045(04)01414-7

    Article  CAS  PubMed  Google Scholar 

  41. Ehlers, M.R.: Immune-modulating effects of alpha-1 antitrypsin. Biol. Chem. 395, 1187–1193 (2014). https://doi.org/10.1515/hsz-2014-0161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Csosz, E., Markus, B., Darula, Z., Medzihradszky, K.F., Nemes, J., Szabo, E., et al.: Salivary proteome profiling of oral squamous cell carcinoma in a Hungarian population. FEBS Open Bio. 8, 556–569 (2018). https://doi.org/10.1002/2211-5463.12391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jessie, K., Jayapalan, J.J., Ong, K.C., Abdul Rahim, Z.H., Zain, R.M., Wong, K.T., Hashim, O.H.: Aberrant proteins in the saliva of patients with oral squamous cell carcinoma. Electrophoresis. 34, 2495–2502 (2013). https://doi.org/10.1002/elps.201300107

    Article  CAS  PubMed  Google Scholar 

  44. Kawahara, R., Bollinger, J.G., Rivera, C., Ribeiro, A.C., Brandao, T.B., Paes Leme, A.F., et al.: A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics. 16, 159–173 (2016). https://doi.org/10.1002/pmic.201500224

    Article  CAS  PubMed  Google Scholar 

  45. Guo, X., Hao, Y., Kamilijiang, M., Hasimu, A., Yuan, J., Wu, G., Reyimu, H., Kadeer, N., Abudula, A.: Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and ingenuity pathway analysis. Tumour Biol. 36, 1711–1720 (2015). https://doi.org/10.1007/s13277-014-2772-5

    Article  CAS  PubMed  Google Scholar 

  46. Hao, Y., Li, D., Xu, Y., Ouyang, J., Wang, Y., Zhang, Y., Li, B., Xie, L., Qin, G.: Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 20, 195 (2019). https://doi.org/10.1186/s12859-019-2734-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim, L.C., Looi, M.L., Zakaria, S.Z., Sagap, I., Rose, I.M., Chin, S.F., et al.: Identification of differentially expressed proteins in the serum of colorectal Cancer patients using 2D-DIGE proteomics analysis. Pathol Oncol Res. 22, 169–177 (2016). https://doi.org/10.1007/s12253-015-9991-y

    Article  CAS  PubMed  Google Scholar 

  48. Ren, L., Yi, J., Li, W., Zheng, X., Liu, J., Wang, J., du, G.: Apolipoproteins and cancer. Cancer Med. 8, 7032–7043 (2019). https://doi.org/10.1002/cam4.2587

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bunkenborg, J., Pilch, B.J., Podtelejnikov, A.V., Wisniewski, J.R.: Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics. 4, 454–465 (2004). https://doi.org/10.1002/pmic.200300556

    Article  CAS  PubMed  Google Scholar 

  50. Campos, D., Freitas, D., Gomes, J., Magalhaes, A., Steentoft, C., Gomes, C., et al.: Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol. Cell. Proteomics. 14, 1616–1629 (2015). https://doi.org/10.1074/mcp.M114.046862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camisasca, D.R., da Ros, G.L., Soares, M.R., Sandim, V., Nogueira, F.C., Garcia, C.H., et al.: A proteomic approach to compare saliva from individuals with and without oral leukoplakia. J. Proteome. 151, 43–52 (2017). https://doi.org/10.1016/j.jprot.2016.07.029

    Article  CAS  Google Scholar 

  52. Lo, W.Y., Lai, C.C., Hua, C.H., Tsai, M.H., Huang, S.Y., Tsai, C.H., Tsai, F.J.: S100A8 is identified as a biomarker of HPV18-infected oral squamous cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry staining. J. Proteome Res. 6, 2143–2151 (2007). https://doi.org/10.1021/pr060551+

    Article  CAS  PubMed  Google Scholar 

  53. Liao, K.A., Tsay, Y.G., Huang, L.C., Huang, H.Y., Li, C.F., Wu, T.F.: Search for the tumor-associated proteins of oral squamous cell carcinoma collected in Taiwan using proteomics strategy. J. Proteome Res. 10, 2347–2358 (2011). https://doi.org/10.1021/pr101146w

    Article  CAS  PubMed  Google Scholar 

  54. Tung, C.L., Lin, S.T., Chou, H.C., Chen, Y.W., Lin, H.C., Tung, C.L., Huang, K.J., Chen, Y.J., Lee, Y.R., Chan, H.L.: Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma. J. Pharm. Biomed. Anal. 75, 7–17 (2013). https://doi.org/10.1016/j.jpba.2012.11.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Oral Cancer Research & Coordinating Centre, University of Malaya (OCRCC-UM) for providing serum samples and data from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS).

Funding

This work was supported by the University of Malaya Postgraduate Research Grant (PPP) PG326–2016A and University of Malaya (UM) High Impact Research (HIR) MoE Grants UM.C/625/1/HIR/MOE/DENT/09 and UM.C/625/1/HIR/MOHE/MED/16/5 from the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PNG 1145 kb)

High resolution image (TIFF 1304 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, YL., Anand, R., Yuen, K.M. et al. Identification of potential glycoprotein biomarkers in oral squamous cell carcinoma using sweet strategies. Glycoconj J 38, 1–11 (2021). https://doi.org/10.1007/s10719-021-09973-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-09973-z

Keywords

Navigation