Skip to main content

Advertisement

Log in

Methane and Electricity Production from Poultry Litter Digestion in the Amazon Region of Brazil: A Large-Scale Study

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2021

This article has been updated

Abstract

This work, on a real scale, aims to characterize and quantify the production of biogas from poultry litter based on Napier grass (CN) and rice husk (CZ) as substrates. The system uses four substrate feed tanks, followed by four anaerobic reactors and a stabilization pond for the effluent. The system has a generator set used in the production of electricity. Poultry litter was analyzed for the chemical determination of the constituents. Samples were collected at the entrance and exit of the biodigester to verify the efficiency of removal of organic matter. Biogas production and consumption were monitored. In this research, a new methodology was used to replace the residue of CN with CZ and feed the biodigestion system without interrupting the process until the complete replacement of one residue with another.The values of N, P, K obtained were, respectively, 2.92, 3.72 and 2.12 g/100 g. The COD removal efficiency in the biodigesters was 51%, representing a load of 79.8 kgDQO/day. The values of CH4 and CO2 concentrations in biogas were 52.5 and 47.5%, respectively. The highest energy production occurred in September (9280 kWh/month). In the months of July and September, the highest values of energy demand (around 2000 kWh/month) were perceived, with exhaust fans and fans as the main responsible for energy consumption (48% of the total). The research showed how the use of poultry waste can contribute to reducing the cost of electricity from rural properties, providing economic development and improving the local energy sector.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Miah, M.R., Rahman, A.K.L., Akanda, M.R., Pulak, A., Rouf, A.: Production of biogas from poultry litter mixed with the co-substratecow dung. J. Taibah Univ. Sci. (2016). https://doi.org/10.1016/j.jtusci.2015.07.007

    Article  Google Scholar 

  2. Achinas, S., Euverink, G.J.W.: Theoretical analysis of biogas potential prediction from agricultural waste. Resour. Effic. Technol. (2016). https://doi.org/10.1016/j.reffit.2016.08.001

    Article  Google Scholar 

  3. Nascimento, P.F.P., Sousa, J.F., Oliveira, J.A., Possa, R.D., Santos, L.S., Carvalho, F.C., Ruiz, J.A.C., Pedroza, M.M., Bezerra, M.B.D.: Wood sawdust and sewage sludge pyrolysis chars for CO2 adsorption using a magnetic suspension balance. Can. J. Chem. Eng. (2017). https://doi.org/10.1002/cjce.22861

    Article  Google Scholar 

  4. Pedroza, M.M., Sousa, J.F., Vieira, G.E.G., Bezerra, M.B.D.: Characterization of the products from the pyrolysis of sewage sludge in 1 kg/h rotating cylinder reactor. J. Anal. Appl. Pyrol (2014). https://doi.org/10.1016/j.jaap.2013.10.009

    Article  Google Scholar 

  5. Torrijos, M.: State of development of biogas production in europe. Procedia Environ. Sci. (2016). https://doi.org/10.1016/j.proenv.2016.07.043

    Article  Google Scholar 

  6. Shen, J., Zhu, J.: Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model. J. Environ. Sci. Health Part A (2016). https://doi.org/10.1080/10934529.2015.1109395

    Article  Google Scholar 

  7. Markou, G.: Improved anaerobic digestion performance and biogas production from poultry litter after lowering its nitrogen contente. Biores. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.07.067

    Article  Google Scholar 

  8. Leal, R.M.P., Figueira, R.F., Tornisielo, V.L., Regitano, J.B.: Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Sci. Total Environ. (2012). https://doi.org/10.1016/j.scitotenv.2012.06.002

    Article  Google Scholar 

  9. Rogeri, D.A., Ernani, P.R., Mantovani, A., Lourenço, K.S.: Composition of poultry litter in Southern Brazil. Rev Bras Cienc Solo (2016). https://doi.org/10.1590/18069657rbcs20140697

    Article  Google Scholar 

  10. Lynch, D., Henihan, A.M., Bowen, B., Lynch, D., McDonnell, K., Kwapinski, W., Leahy, J.J.: Utilisation of poultry litter as an energy feedstock. Biomass Bioenergy (2013). https://doi.org/10.1016/j.biombioe.2012.12.009

    Article  Google Scholar 

  11. Yangin-Gomec, C., Ozturk, I.: Effect of maize silage addition on biomethane recovery from mesophilic co-digestion of chicken and cattle manure to suppress ammonia inhibition. Energy Convers. Manage. (2013). https://doi.org/10.1016/j.enconman.2013.03.020

    Article  Google Scholar 

  12. Zamanzadeh, M., Hagen, L.H., Svensson, K., Linjordet, R., Horn, S.H.: Anaerobic digestion of food waste – effect of recirculation and temperature on performance and microbiology. Water Res. (2016). https://doi.org/10.1016/j.watres.2016.03.058

    Article  Google Scholar 

  13. APHA: Standard Methods for the Examination of Water and Wastewater, 21st edn. APHA, AWWA, WPCF, Washington (2005)

    Google Scholar 

  14. Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., Nakashimada, Y.: Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Biores. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.03.071

    Article  Google Scholar 

  15. Rajagopal, R., Massé, D.I.: Start-up of dry anaerobic digestion system for processing solid poultry litter using adapted liquid inoculum. Process Saf. Environ. Prot. (2016). https://doi.org/10.1016/j.psep.2016.05.003

    Article  Google Scholar 

  16. Wang, X., Yang, G., Feng, Y., Ren, G., Han, X.: Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Biores. Technol. (2012). https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  17. Konzen, E.A.: Fertilização de lavoura e pastagem com dejetos de suínos e cama de aves. Embrapa Milho e Sorgo, Sete Lagoas. http://docsagencia.cnptia.embrapa.br/milho/circul31_Fertilizacao_de_lavoura_e_pastagem_com_dejetos.pdf (2003). Accessed 26 June 2020.

  18. Severino, L. S., Lima, R. L. S., Beltrão, N. E. M.: Composição Química de Onze Materiais Orgânicos Utilizados em Substratos para Produção de Mudas. Embrapa, Campina Grande. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/277254/1/COMTEC278.pdf (2006). Accessed 26 June 2020.

  19. Marín, O.L.Z., Tinoco, I.F.F., Saraz, J.A.O., Souza, C.F., Vieira, M.F.A.: Evaluation of the fertilizer and contamination potential of different broiler litter types subjected to various use cycles. Rev. Fac. Nac. Agron. Medellín (2015). https://doi.org/10.15446/rfnam.v68n2.50967

    Article  Google Scholar 

  20. Dalólio, F.S., Silva, J.N., Oliveira, A.C.C., Tinôcoa, I.F.F., Barbosa, R.C., Resende, M.O., Albino, L.F.T., Coelho, S.T.: Poultry litter as biomass energy: a review and future perspectives. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.03.104

    Article  Google Scholar 

  21. Converti, A., Oliveira, R.P.S., Torres, B.R., Lodi, A., Zilli, M.: Biogas production and valorization by means of a two-step biological process. Biores. Technol. (2009). https://doi.org/10.1016/j.biortech.2009.05.072

    Article  Google Scholar 

  22. Frigon, J.C., Guiot, S.R.: Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod. Biorefining (2010). https://doi.org/10.1002/bbb.229

    Article  Google Scholar 

  23. Chernicharo, C.A.L.: Post-treatment options for the anaerobic treatment of domestic wastewater. Rev. Environ. Sci. Bio/Technol. (2006). https://doi.org/10.1007/s11157-005-5683-5

    Article  Google Scholar 

  24. Jing, Z., Hu, H., Niu, Q., Liu, Y., Li, Y.Y., Wang, X.C.: UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Biores. Technol. (2013). https://doi.org/10.1016/j.biortech.2013.03.137

    Article  Google Scholar 

  25. O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J.: The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae (2012). https://doi.org/10.1016/j.hal.2011.10.027

    Article  Google Scholar 

  26. Massé, D.I., Masse, L., Croteau, F.: The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Biores. Technol. (2003). https://doi.org/10.1016/S0960-8524(03)00009-9

    Article  Google Scholar 

  27. Achinas, S., Achinas, V., Euverink, G.J.W.: A technological overview of biogas production from biowaste. Engineering (2017). https://doi.org/10.1016/J.ENG.2017.03.002

    Article  Google Scholar 

  28. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  29. Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. (2013). https://doi.org/10.1016/j.procbio.2013.04.012

    Article  Google Scholar 

  30. Dai, X., Li, X., Zhang, D., Chen, Y., Dai, L.: Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: the effects of pH and C/N ratio. Biores. Technol. (2016). https://doi.org/10.1016/j.biortech.2016.05.100

    Article  Google Scholar 

  31. Massé, D.I., Masse, L.: The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. Biores. Technol. (2001). https://doi.org/10.1016/S0960-8524(00)00105-X

    Article  Google Scholar 

  32. Kispergher, E.M., D’aquino, C.A., Costa, L.C., Mello, T.C., Weinschutz, R., Mathias, A.L.: Effect of organic load and alkalinity on dairy wastewater biomethanation. Eng. Agríc. (2017). https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p820-827/2017

    Article  Google Scholar 

  33. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., Foust, T. D.: Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science (2007). https://science.sciencemag.org/content/315/5813/804.full.

  34. Babaee, A., Shayegan, J., Roshani, A.: Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature. J. Environ. Health Sci. Eng. (2013). https://doi.org/10.1186/2052-336X-11-15

    Article  Google Scholar 

  35. Naegele, H.J., Lemmer, A., Oechsner, H., Jungbluth, T.: Electric energy consumption of the full scale research biogas plant “Unterer Lindenhof”: results of longterm and full detail measurements. Energies (2012). https://doi.org/10.3390/en5125198

    Article  Google Scholar 

  36. Kantarli, I.C., Kabadayi, A., Ucar, S., Yanik, J.: Conversion of poultry wastes into energy feedstocks. Waste Manage. (2016). https://doi.org/10.1016/j.wasman.2016.07.019

    Article  Google Scholar 

  37. Shahriari, H., Warith, M., Hamoda, M., Kennedy, K.J.: Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manage. (2012). https://doi.org/10.1016/j.wasman.2011.08.012

    Article  Google Scholar 

  38. Izumi, K., Okishio, Y.K., Nagao, N., Niwa, C., Yamanoto, S., Toda, T.: Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. (2010). https://doi.org/10.1016/j.ibiod.2010.06.013

    Article  Google Scholar 

  39. Scarlat, N., Dallemand, J.F., Fahl, F.: Biogas: developments and perspectives in Europe. Renewable Energy (2018). https://doi.org/10.1016/j.renene.2018.03.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) (Process: 468833/2014-5), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Mendes Pedroza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been revised with the retrospective open access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroza, M.M., da Silva, W.G., de Carvalho, L.S. et al. Methane and Electricity Production from Poultry Litter Digestion in the Amazon Region of Brazil: A Large-Scale Study. Waste Biomass Valor 12, 5807–5820 (2021). https://doi.org/10.1007/s12649-021-01360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01360-x

Keywords

Navigation