Skip to main content

Advertisement

Log in

Influence of Ti3AlC2 Ceramic Particles in AZ91 Alloy: Produced by Melt Infiltration Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The processing approach and conditions to fabricate AZ91–Ti3AlC2 composites through melt infiltration (MI) were optimized. Ti3AlC2 reinforcement was varied from ~ 30 to ~ 50 vol.%. In the processing approach, AZ91 alloy cubes were spread in Ti3AlC2 powder packing and heated to 600–750 °C at an applied pressure of 0.2–7 MPa, resulting in AZ91–Ti3AlC2 composite. The effect of starting particle size of Ti3AlC2 powder applied pressure, temperature and time to obtain 95% relative density composites was studied. Further, it was demonstrated that the processing parameters differ with the varying Ti3AlC2 vol.%. The effect of reinforcement particle size on distribution within the AZ91 matrix was established. The processing approach is a single step, wherein the preform fabrication process is not required, as reported in the literature. Microhardness, compressive strength and flexural strength of AZ91–50Ti3AlC2 composite were 307 ± 14 HV0.5, 592 ± 13 MPa and 560 ± 9 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gupta M and Sharon NML, Magnesium, magnesium alloys and magnesium composites. Wiley, Hoboken, NJ, USA (2010).

    Google Scholar 

  2. Deng KK, Wu K, Y.W. Wu, Nie KB and Zheng MY, J Alloy Comp 504(2010) 542.

  3. Lan J, Yang Y and Li X, Mater Sci Engg A 386 (2004) 284.

    Article  Google Scholar 

  4. Contreras A, Lopez VH and Bedolla E, Scripta Materialia 51(2004) 249.

    Article  CAS  Google Scholar 

  5. Yao Y and Chen L, J Mater Sci Tech 30(2014) 661.

    Article  CAS  Google Scholar 

  6. Aydin F, Sun Y and Turan ME, J Comp Mat 54(2020) 141.

    Article  CAS  Google Scholar 

  7. Radovic M and Barsoum MW, Am Ceram Soc Bull 92(2013) 20.

    CAS  Google Scholar 

  8. Tzenov NV and Barsoum MW, J Am Ceram Soc 83(2000) 825.

    Article  CAS  Google Scholar 

  9. Amini S, Ni C and Barsoum MW, Comp Sci Tech 69(2009) 414.

    Article  CAS  Google Scholar 

  10. Amini S and Barsoum MW, Mater Sci Engg A 527(2010) 3707.

    Article  Google Scholar 

  11. Kontsos A, Loutas T, Kostopoulos V, Hazeli K, Anasori B and Barsoum MW, Acta Materialia 59(2011) 5716.

    Article  CAS  Google Scholar 

  12. Anasori B, Caspi EN and Barsoum MW, Mater Sci Engg A 618(2014) 511.

    Article  CAS  Google Scholar 

  13. Nelson M, Agne MT, Anasori B, Yang J and Barsoum MW, Mater Sci Engg A 705(2017) 182.

    Article  CAS  Google Scholar 

  14. Yu W, Wang X, Zhao H, Ding C, Huang Z, Zhai H, Guo Z and Xiong S, J Alloys Comp 702(2017) 199.

    Article  CAS  Google Scholar 

  15. Yua W, Li X, Vallet M and Tian L, Mechanics of Materials 129(2019) 246.

    Article  Google Scholar 

  16. Wang WJ, Gauthier-Brunet V, Bei GP, Laplanche G, Bonneville J, Joulain A and Dubois S, Mater Sci Engg A 530(2011) 168.

    Article  CAS  Google Scholar 

  17. Hu L, O’Neil M, Erturun V, Benitez R, Proust G, Karaman I and Radovic M, Nature 6(2016), |6:35523| DOI: https://doi.org/10.1038/srep35523 6.

  18. Hanaor DAH, Hu L, Kan WH, Proust G, Foley M, Karaman I and Radovic M, Mater Sci Engg A 672(2016) 247.

    Article  CAS  Google Scholar 

  19. Li HY, Zhou Y, Cui A, Zheng Y, Huang ZY, Zhai HX and Li SB, Int J Appl Ceram Technol 13(2016) 636.

    Article  CAS  Google Scholar 

  20. Rangaraj L, Sagar RV, Stalin M, Raghavendra K and Venkateswarlu K, Meta Mater Trans A 50(2019) 3714.

    Article  CAS  Google Scholar 

  21. Vijayakumar MP, Rangaraj L and Raja S, J Comp Mater 53(2019) 3861.

    Article  Google Scholar 

  22. ASTM C1424–15(2019), Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature

  23. ASTM C1161–18(2008), Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature

  24. Toy C and Scott WD, J Am Ceram Soc 73(1990) 97.

    Article  CAS  Google Scholar 

  25. Hao GL, Han FS, Wang QZ and J. Wu J, Physica B 391(2007) 186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely acknowledge the financial support received from the Aeronautics Research and Development Board, New Delhi, Government of India (ARDB/01/2031765/M/I). We would like to thank our colleagues from Materials Science Division: Dr M Sujata (providing AZ91 sample and also for technical discussion), Dr Kaustav Barat (technical discussion), Dr Anjana Jain (XRD), Mr Madan (Optical Microscopy), Mr M Stalin (compression test). We would like to thank Mr Siju, Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore for his help in conducting FESEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingappa Rangaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, D., Rangaraj, L., Suresha, B. et al. Influence of Ti3AlC2 Ceramic Particles in AZ91 Alloy: Produced by Melt Infiltration Method. Trans Indian Inst Met 74, 743–752 (2021). https://doi.org/10.1007/s12666-021-02185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02185-x

Keywords

Navigation