Skip to main content
Log in

Effect of Carbon Addition on Mechanical Properties and Dry Sliding Behavior of Fe-0.65P Alloy Processed by Powder Forging

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work reports the effect of addition of 0.2 wt.% C on the microstructure, mechanical properties and dry sliding wear of Fe-0.65 wt.% P-based alloy prepared by hot powder forging. The presence of phosphorus (P) leads to loss of ductility in steels which may be overcome by use of the reported powder forging route as well as addition of C in processing of Fe–P alloys. In this study, the iron-phosphate (master alloy) powder containing 5 wt.% P was prepared by a chemical route. The master alloy powder was then mixed with water-atomized Fe powder, while carbon was added in the form of graphite powder. The mixed powders were filled in a mild steel (M.S) capsule and heated at 1323 K in tubular furnace in the presence of flowing hydrogen atmosphere. The heated capsule was hot-forged at 1323 K and further homogenized at the same temperature for two hours. Strength and hardness increased on addition of 0.20 wt.% carbon in Fe-0.65 wt.% P alloy without loss in ductility. Friction and wear properties under dry sliding wear conditions have also been found to improve with the addition of carbon. Wear results have been discussed and correlated with observed microstructure and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Molinari A, Straffelini G, Fontanari V, and Canteri R, Powder metall 35 (1992) 285.

    Article  CAS  Google Scholar 

  2. Vassileva V, Krecar D, Tomastik C, Gierl-Mayer Ch, Hutter H, and Danninger H, Powder metall progress 15 (2015) 36.

    CAS  Google Scholar 

  3. Moyer K H, Mag. Maters and Properties for Powder Metall Part Appls, ASM Handbook 7 (1998) 1006.

  4. Rui M, Kaiping Y, Litao L, Heng J, Shulong Y, and Peng Y, Metals 9 (2019) 321.

    Article  CAS  Google Scholar 

  5. Ma J, Houan J, Liang Y, Dil F K, Yihang Y, Siyong G, Jiqiong L, and Xiaofeng Z, Int Maters Res 12 (2019) 1129.

    Article  Google Scholar 

  6. Qu X, Gowri S, and Lund J A, Int J Powder Metall 27(1991) 9.

    CAS  Google Scholar 

  7. Straffelini G, Fontanari V, Molinari A, and Tesi B, Powder Metall 36 (1993) 135.

    Article  CAS  Google Scholar 

  8. Cheng L, and Rana R, Low Density High Strength Steel and Method for Producing Said Steel, US Patent 14 (2014).

  9. Gautama, B R, Bull Mater Sci 26 (2003) 483.

  10. Tengzelius J, Avoiding Brittleness in Iron-Phosphorus Alloys, Metal Powder Report UK 48 (1993) 36.

  11. Hansel H, and Grabke H J, Scripta Metall 20 (1986) 1641.

    Article  Google Scholar 

  12. Hopkins B E, and Tipler H R, J Iron Steel Inst (1958) 218.

    Google Scholar 

  13. Abiko K, Suzuki S, and Kimura H, Tran Japan Inst Metals 23 (1982) 43.

    Article  CAS  Google Scholar 

  14. Suzuki S, Obata M, Abiko K, and Kimura H, Tran Iron Steel Inst Japan 25 (1985) 62.

    Article  Google Scholar 

  15. Stewart J W, Charles J A, and Wallach E R, Mater Sci Technol, 16 (2000), 275.

    Article  CAS  Google Scholar 

  16. Straelini G, and Molinari A, Powder Metall 44 (2001) 248.

    Article  Google Scholar 

  17. Tomlinson W J, and Vandrill G J, Wear (1987) 375.

  18. Tomlinson W J, and Dennison G, Tri Int (1989) 259.

  19. Batienkov R V, Dorofeev V Y, Eremeeva Z V, and Artemov V V, Metallurgist 55 (2011) 289.

    Article  CAS  Google Scholar 

  20. Hanejko F J, Int J Powder Metall 4 (2005) 37.

    Google Scholar 

  21. Rutz H G, and Hanejko F G, Adv Powder Metall Particulate Maters 5 (1994) 117.

    Google Scholar 

  22. Erden M A, Gunduz S, Karabulut H, and Turkmen M, Mechanics 23 (2017) 574.

    Article  Google Scholar 

  23. Lindskog P, Tengzelius J, and Kvist S A, Int J Powder Metall 10 (1977) 97.

    Google Scholar 

  24. Preusse H, and Bolton J D, Powder Metall 42 (1999) 51.

    Article  CAS  Google Scholar 

  25. Chaurasia S K, Prakash U, and Dabhade V, Metallo Micro Anal 6 (2017) 561.

    CAS  Google Scholar 

  26. Chaurasia S K, Prakash U, Dabhade V V, and Nath S K, Metallo Micro Anal 6 (2018) 1.

    Google Scholar 

  27. Turkmen M, Powder Metall Metal Ceramics 55 (2016)164.

    Article  CAS  Google Scholar 

  28. Igharo M, and Wood J V, Powder Metall 31 (1988) 184.

    Article  CAS  Google Scholar 

  29. Eyre T S, and Walker R K, Powder Metall 19 (1976) 22.

    Article  CAS  Google Scholar 

  30. James W B, McDermott M J, and Powell R A, Powder Forging, ASM Hand Book 14 (1998) 188.

  31. Muchnik S V, Powder Metall Metal Ceramics 23 (1984) 915.

    Google Scholar 

  32. Bhushan B, Introduction to Tribo, 2nd ed Wiley, New York (2013).

    Book  Google Scholar 

  33. Chaurasia S K, Prakash U, Dabhade V V, and Nath S K, Mater Today Proc 5 (2018) 17170.

    Article  CAS  Google Scholar 

  34. Shaikh Q A, Coleman D S, Bates J, Nurthen P D, and Brewin P R, Mater Sci Technol 7 (1991) 728.

    Article  CAS  Google Scholar 

  35. Simchi A, and Danninger H, Powder Metall 47 (2004) 73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described above was carried out in the Dept. of Metallurgical & Materials Engineering, IIT Roorkee (Uttarakhand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram V. Dabhade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, S.K., Dabhade, V.V., Prakash, U. et al. Effect of Carbon Addition on Mechanical Properties and Dry Sliding Behavior of Fe-0.65P Alloy Processed by Powder Forging. Trans Indian Inst Met 74, 735–742 (2021). https://doi.org/10.1007/s12666-021-02195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02195-9

Keywords

Navigation