Skip to main content
Log in

Unsteady MHD Casson fluid flow with heat transfer passed over a porous rigid plate with stagnation point flow: Two-parameter Lie scaling approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study examined the steady flow of Casson fluid over a rigid porous plate in an infinite region with magnetohydrodynamic (MHD), thermal radiation and heat source-sink effects. Under the influence of stagnation point flow and thermal transport, the physical model is strengthened. The model consists of nonlinear partial differential equations (PDEs), which are controlled after applying approximation of the boundary layer (BL). The significance of this flow model here is that these PDEs have been turned into ordinary differential equations (ODEs) by means of two-parameter Lie scaling transformations. These ODEs are rectified using the MATLAB bvp4c technique. Convergence analysis of these ODEs demonstrate the consistency of the model. Dimensionless parameters are: Casson fluid parameter \(\beta \), Hartmann number \(M_{t}\), Darcy ratio K, thermal radiation \(\Delta _{t}\) and heat source-sink parameter \(Q_{t}\). These parameters are analysed using graphs for fluid flow, temperature and physical quantities. These quantities are analysed using graphs and a table. All the prominent parameters increased the flow of fluid, but thermal transport was decreased for different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V K P Nanjundaswamy, U S Mahabaleshwar, P Mallikarjun, M M Nezhad and G Lorenzini, Defect Diffus. Forum 388, 420 (2018)

    Article  Google Scholar 

  2. M A El-Aziz and A A Afify, Entropy 21, 592 (2019)

    Article  ADS  Google Scholar 

  3. A Mahdy, J. Eng. Phys. Thermophys. 88, 928 (2015)

    Article  Google Scholar 

  4. N Bachok, A Ishak and I Pop, Int. J. Heat Mass Transf. 55, 2102 (2012)

    Article  Google Scholar 

  5. F Tie-Gang, Z Ji and Y Shan-Shan, Chin. Phys. Lett. 26, 014703 (2009)

    Article  ADS  Google Scholar 

  6. M J Uddin, W A Khan and A I Md Ismail, Alex. Eng. J. 55, 829 (2016)

    Article  Google Scholar 

  7. M J Uddin, M M Rashidi, H H Alsulami, S Abbasbandy and N Freidoonimeh, Alex. Eng. J. 55, 2299 (2016)

    Article  Google Scholar 

  8. M A Sadiq, Symmetry 11, 132 (2019), https://doi.org/10.3390/sym11020132.

    Article  Google Scholar 

  9. B S Tilley and P D Weidman, Eur. J. Mech. B Fluids 17, 205 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. C Y Wang, Int. J. Nonlinear Mech. 43, 377 (2008)

    Article  ADS  Google Scholar 

  11. C Y Wang, Int. J. Eng. Sci. 46, 391 (2008)

    Article  Google Scholar 

  12. C Y Wang, Eur. J. Mech. B/Fluids 38, 73 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y Y Lok, N Amin and I Pop, Int. J. Nonlinear Mech. 41, 622 (2006)

    Article  ADS  Google Scholar 

  14. T Grosan, I Pop, C Revnic and D B Ingham, Meccanica 44, 565 (2009)

    Article  MathSciNet  Google Scholar 

  15. S Nadeem, A Hussain and M Khan, Commun. Nonlinear Sci. Numer. Simulat. 15, 4914 (2010)

    Google Scholar 

  16. A Borrelli, G Giantesio and M C Patria, Comput. Math. Appl. 66, 472 (2013)

    Article  MathSciNet  Google Scholar 

  17. N Bachok, A Ishak, R Nazar and I Pop, Phys. B Cond. Matter 405, 526 (2010)

    Article  Google Scholar 

  18. N A Amirson, M J Uddin and A I Ismail, Alex. Eng. J. 55, 1983 (2016)

    Article  Google Scholar 

  19. M R Mohaghegh and A B Rahimi, J. Heat Transf. 138, 112001 (2016)

    Article  Google Scholar 

  20. A Ghasemian, S Dinarvand, A Adamian and A M Sherremet, J. Nanofluids 8, 1544 (2019)

    Article  Google Scholar 

  21. A R Bestman, Int. Center Theor. Phys11, 257 (1988)

    Google Scholar 

  22. D Pal and B Talukdar, Commun. Nonlinear Sci. Numer. Simulat. 15, 2878 (2010)

    Article  ADS  Google Scholar 

  23. X J Yang and F Gao, Therm. Sci. 21, 133 (2017)

    Article  Google Scholar 

  24. X J Yang, Therm. Sci. 20, 677 (2016)

    Article  Google Scholar 

  25. X J Yang, Appl. Math. Lett. 64, 193 (2017)

    Article  MathSciNet  Google Scholar 

  26. X J Yang, F Gao and H W Zhou, Math. Methods Appl. Sci. 41, 9312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. X J Yang, Y Y Feng, C Cattani and M Inc, Math. Methods Appl. Sci. 42, 4054 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. J G Liu, X J Yang, Y Y Feng and H Y Zhang, J. Appl. Anal. Comput. 10, 1060 (2020)

    MathSciNet  Google Scholar 

  29. X J Yang, Therm. Sci. 00, 427 (2019)

    Google Scholar 

  30. X J Yang, Therm. Sci. 23, 4117 (2019)

    Article  Google Scholar 

  31. X J Yang, Therm. Sci. 23, 260 (2019)

    Google Scholar 

  32. S Arshed, A Biseas, M Abdelaty, Q Zhou, S P Moshokoa and M R Belic, Chin. J. Phys. 56, 2879 (2018)

    Article  Google Scholar 

  33. R Mahato and M Das, Pramana – J. Phys. 94: 127 (2020)

    Article  ADS  Google Scholar 

  34. A K Gautam, A K Verma, K Bhattacharyya and A Banerjee, Pramana – J. Phys. 94: 108 (2020)

    Article  ADS  Google Scholar 

  35. B Ramadevi, K A Kumar, V Sugunamma and N Sandeep, Pramana – J. Phys. 93: 86 (2019)

    Article  ADS  Google Scholar 

  36. I Mustafa, T Javed, A Ghaffari and H Khalil, Pramana – J. Phys. 93: 53 (2019)

    Article  ADS  Google Scholar 

  37. E Azher, Z Iqbal, S Ijaz and E N Maraj, Pramana – J. Phys. 91: 61 (2018)

    Article  ADS  Google Scholar 

  38. M Kumar, G J Reddy and N Dalir, Pramana – J. Phys. 91: 60 (2018)

    Article  ADS  Google Scholar 

  39. Z Iqbal, Z Mehmood and B Ahmed, Pramana – J. Phys. 90: 64 (2018)

    Article  ADS  Google Scholar 

  40. A A Afify and M A El-Aziz, Pramana – J. Phys. 88: 31 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research funding by Scientific Research Deanship at University of Ha\(^\prime \)il, Saudi Arabia through project number RG-191307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musharafa Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Tufail, M.N. & Chaudhry, Q.A. Unsteady MHD Casson fluid flow with heat transfer passed over a porous rigid plate with stagnation point flow: Two-parameter Lie scaling approach. Pramana - J Phys 95, 28 (2021). https://doi.org/10.1007/s12043-020-02054-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02054-0

Keywords

PACS Nos.

Navigation