Skip to main content
Log in

Distinct bacterial community compositions in the Populus rhizosphere under three types of organic matter input across different soil types

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Organic matter addition is an important management practice for maintaining soil fertility and the sustainability of artificial ecosystems. However, the effects of different types of organic matter on the microbial community in the perennial plant rhizosphere are not well understood.

Methods

A pot experiment was conducted to study how soil type and organic inputs influence bacterial community composition in the Populus rhizosphere. Plants were grown in the common forest soil (COM) and the poplar forest soil (POP), and three types of organic matter were applied. The rhizosphere soils were sampled after four months growth and rhizobacterial community was analyzed by 16S rRNA high-throughput sequencing.

Results

Organic inputs increased the alpha diversity in COM but not in POP. Both the soil type and organic inputs significantly influenced community structures. The different types of organic matter jointly enriched Ramlibacter, Sphingomonas and Adhaeribacter OTUs in the Populus rhizosphere. Amendment with organic matter improved network complexity and stability but had little effect on the species composition of the rhizosphere network at the phylum level.

Conclusions

Increased network stability was found in the Populus rhizosphere with organic amendments. These results highlight that organic matter input increased the diversity and network interactions in the Populus rhizosphere, indicated promoting species coexistence caused by resource availability improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third international AAAI conference on weblogs and social media, 361–362

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides. Braz J Microbiol 41:922–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  PubMed  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu X, Li L, Zheng J, Qu J, Zheng J, Zhang X, Pan G (2015) Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Appl Soil Ecol 91:68–79

    Article  CAS  Google Scholar 

  • Chen L, Jiang Y, Liang C, Luo Y, Xu Q, Han C, Zhao Q, Sun B (2019) Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtney RG, Mullen GJ (2008) Soil quality and barley growth as influenced by the land application of two compost types. Bioresour Technol 99:2913–2918

    Article  CAS  PubMed  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root–associated Burkholderia cepacia populations. Microb Ecol 38:273–284

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng L, Liu G-b, Shangguan Z-p (2014) Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Global Change Biol 20:3544–3556

    Article  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21:266–278

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Zhang X, Dai X, Fu X, Yang F, Liu X, Sun X, Wen X, Sean S (2014) Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Appl Soil Ecol 84:140–147

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Chu H (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    Article  CAS  Google Scholar 

  • Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, Wang A, He Z, Deng Y (2017) Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol 26:6170–6182

    Article  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischerová Z, Tlustoš P, Jiřina S, Kornelie Š (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Article  PubMed  Google Scholar 

  • Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segrè D, Mehta P, Sanchez A (2018) Emergent simplicity in microbial community assembly. Science 361:469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microb 77:5934–5944

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Liu W, Zhu C, Luo G, Kong Y, Ling N, Wang M, Dai J, Shen Q, Guo S (2017) Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 424:335–349

    Article  Google Scholar 

  • Hacquard S, Schadt CW (2015) Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol 205:1424–1430

    Article  PubMed  Google Scholar 

  • Harkes P, Suleiman AKA, van den Elsen SJJ, de Haan JJ, Holterman M, Kuramae EE, Helder J (2019) Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents. Sci Rep-UK 9:1–15

    CAS  Google Scholar 

  • Hossain MZ, Fragstein PV, Niemsdorff PV, Heß J (2017) Effect of different organic wastes on soil propertie s and plant growth and yield: a review. Sci Agric Bohem 48:224–237

    Google Scholar 

  • Jaafar NM, Clode PL, Abbott LK (2015) Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 25:770–780

    Article  Google Scholar 

  • Konopka A, Lindemann S, Fredrickson J (2015) Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 9:1488–1495

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Peterson CA, Tautges NE, Scow KM, Gaudin ACM (2019) Yields and resilience outcomes of organic, cover crop, and conventional practices in a Mediterranean climate. Sci Rep-UK 9:1–11

    Google Scholar 

  • Lin Y, Ye G, Kuzyakov Y, Liu D, Fan J, Ding W (2019) Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem 134:187–196

    Article  CAS  Google Scholar 

  • Ling N, Zhang W, Tan S, Huang Q, Shen Q (2012) Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp. niveum and its antagonistic bacterium in the rhizosphere of watermelon. Appl Soil Ecol 59:13–19

    Article  Google Scholar 

  • Ling N, Zhu C, Xue C, Chen H, Duan Y, Peng C, Guo S, Shen Q (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99:137–149

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo G, Ling L, Ville-Petri F, Junjie G, Shiwei G, Qirong S, Ning L (2018) Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol Biochem 124:105–115

    Article  CAS  Google Scholar 

  • Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, Li J, Huang Y, Zou L, Liang Y, Li T (2019) Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii. Environ Sci Technol 53:6954–6963

    Article  CAS  PubMed  Google Scholar 

  • Maestrini B, Nannipieri P, Abiven S (2015) A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 7:577–590

    Article  CAS  Google Scholar 

  • Malik MA, Marschner P, Khan KS (2012) Addition of organic and inorganic P sources to soil – Effects on P pools and microorganisms. Soil Biol Biochem 49:106–113

    Article  CAS  Google Scholar 

  • Marasco R, Rolli E, Fusi M, Michoud G, Daffonchio D (2018) Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin F, Tuskan GA, DiFazio SP, Lammers P, Newcombe G, Podila GK (2004) Symbiotic sequencing for the Populus mesocosm. New Phytol 161:330–335

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Mena M, Lopez J, Almagro M, Boix-Fayos C, Albaladejo J (2008) Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil Till Res 99:119–129

    Article  Google Scholar 

  • Mcbride MJ, Liu W, Lu X, Zhu Y, Zhang W (2014) The Family Cytophagaceae. Springer, Berlin Heidelberg, pp 577–593

    Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2017) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuccio EE, Starr E, Karaoz U, Brodie EL, Zhou J, Tringe SG, Malmstrom RR, Woyke T, Banfield JF, Firestone MK, Pett-Ridge J (2020) Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J 14:999–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbaumer Y, Cole MA, Offler CE, Patrick JW (2016) Identifying and ameliorating nutrient limitations to reconstructing a forest ecosystem on mined land. Restor Ecol 24:202–211

    Article  Google Scholar 

  • Peng G, Wu J (2016) Optimal network topology for structural robustness based on natural connectivity. Phys A 443:212–220

    Article  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11:2244–2257

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran M, Shi L, Wu C, Li W, An W, Liu Z, Xue S (2019) Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222:314–322

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol 30(6):1562–1574

    CAS  Google Scholar 

  • Sarma B, Borkotoki B, Narzari R, Kataki R, Gogoi N (2017) Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. J Clean Prod 152:157–166

    Article  CAS  Google Scholar 

  • Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211

    Article  CAS  Google Scholar 

  • Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK, Johnson N (2016) The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936

    Article  PubMed  Google Scholar 

  • Song Y, Ling N, Ma J, Wang J, Zhu C, Raza W, Shen Y, Huang Q, Shen Q (2016) Grafting resulted in a distinct proteomic profile of watermelon root exudates relative to the un-grafted watermelon and the rootstock plant. J Plant Growth Regul 35:778–791

    Article  CAS  Google Scholar 

  • Sun R, Zhang X, Guo X, Wang D, Chu H (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18

    Article  CAS  Google Scholar 

  • Tian W, Wang L, Li Y, Zhuang K, Li G, Zhang J, Xiao X, Xi Y (2015) Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric Ecosyst Environ 213:219–227

    Article  CAS  Google Scholar 

  • Tuskan GA, Difazio SP, Teichmann T (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol 6:2–4

    Article  CAS  PubMed  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    Article  CAS  Google Scholar 

  • Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu T-Y, Allen SM, Melton SJ, Martin MZ, Schadt CW, Karve AA, Chen J-G, Yang X, Doktycz MJ, Tuskan GA (2012) Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Mol Plant-Microbe Interact 25:765–778

    Article  CAS  PubMed  Google Scholar 

  • Ye G, Lin Y, Liu D, Chen Z, Luo J, Bolan N, Fan J, Ding W (2019) Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl Soil Ecol 133:24–33

    Article  Google Scholar 

  • Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW (1994) Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology 75:2333–2347

    Article  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhu W, Diao S, Wu X, Lu J, Ding C, Su X (2019) The poplar pangenome provides insights into the evolutionary history of the genus. Commun Biol 2:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhao Z, Gong Q, Zhai B, Li Z (2018) Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol Biochem 125:54–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31200472), the Independent Innovation Project of Jiangsu Province (Project No. CX(17)1004) and the “Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genmei Wang.

Additional information

Responsible Editor: Haiyan Chu.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Chen, J. & Zhu, Y. Distinct bacterial community compositions in the Populus rhizosphere under three types of organic matter input across different soil types. Plant Soil 470, 51–63 (2022). https://doi.org/10.1007/s11104-021-04859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04859-3

Keywords

Navigation