Skip to main content
Log in

Silicon relieves aluminum‐induced inhibition of cell elongation in rice root apex by reducing the deposition of aluminum in the cell wall

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Silicon (Si) is known to alleviate aluminum (Al) toxicity in a number of plant species; however, the mechanisms of Si-triggered Al detoxification have not been elucidated, especially in rice (Oryza sativa). We investigated the interactions between Si and Al in root and the role of cell wall polysaccharides in rice resistance to Al.

Methods

Rice seedlings were grown in 0.5 mM CaCl2 solution with or without 50 µM Al and 1.0 mM H4SiO4 for 24 h. The cell expansion and oxidative injury of root were measured by histochemical analyses; Al accumulation and distribution in root apices were determined by inductively coupled plasma mass spectrometry (ICP-MS); the degree of pectin methylesterification was analyzed by immunofluorescence, and the expression of genes (e.g. OsPME) related to Al resistance was measured by quantitative real-time PCR.

Results

Si relieved the inhibition of cell elongation and oxidative injury caused by Al and significantly reduced Al content (by about 41 %) in cell wall (CW). Meanwhile, Si inhibited pectin methylesterase (PME) activity and its gene expression, thereby increasing the degree of pectin methylesterification, and reduced the content of hemicellulose, which was the main binding site for Al in CW, under Al stress. Furthermore, Si decreased the non-exchangeable Al fraction of CW in root, but did not change the cation exchange capacity of CW.

Conclusions

Si reduces the deposition of Al in the cell wall of rice root apex by decreasing both the degree of pectin demethylesterification and the content of hemicellulose, thereby alleviating Al stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and within its supplementary materials published online.

References

  • Anthon GE, Barrett DM (2004) Comparison of three colorimetric reagents in the determination of methanol with alcohol oxidase. Application to the assay of pectin methylesterase. J Agric Food Chem 52:3749–3753

    CAS  PubMed  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effects of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal 25:537–546. https://doi.org/10.1080/00103629409369061

    Article  CAS  Google Scholar 

  • Blamey FPC, Edmeades DC, Wheeler DM (1990) Role of root cation-exchange capacity in differential aluminum tolerance of lotus species. J Plant Nutr 13:729–744

    CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    CAS  PubMed  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. web science 2:181–189

    Google Scholar 

  • Čiamporová M (2002) Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol Plant 45:161–171

    Google Scholar 

  • Clarkson DT (1967) Interactions between aluminum and phosphorus on root surfaces and cell wall material. Plant Soil 27:347–356

    CAS  Google Scholar 

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27. https://doi.org/10.1104/pp.117.1.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet FJ, Rotov ME, Exley C (2001) Direct and indirect identification of the formation of hydroxyaluminosilicates in acidic solutions. J Inorg Biochem 87:71–79. https://doi.org/10.1016/s0162-0134(01)00317-8

    Article  CAS  PubMed  Google Scholar 

  • Dragišić Maksimović J, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    PubMed  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Cell-wall pectin and its degree of methylation in the maize root‐apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ 28:1410–1420

    CAS  Google Scholar 

  • Exley C, Schneider C, Doucet FJ (2002) The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium? Coord Chem Rev 228:127–135

    CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987. https://doi.org/10.1080/00103628809367988

    Article  CAS  Google Scholar 

  • Furukawa J et al (2007) An aluminum-activated citrate transporter in Barley. Plant Cell Physiol 48:1081–1091

    CAS  PubMed  Google Scholar 

  • Guerriero G, Hausman J, Legay S (2016) Silicon and the Plant Extracellular Matrix. Front Plant Sci 7:463–463

    PubMed  PubMed Central  Google Scholar 

  • Guo JH et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    CAS  PubMed  Google Scholar 

  • Hodson MJ, Evans DE (2020) Aluminium/silicon interactions in higher plants: An update. J Exp Bot 71:6719–6729

    PubMed  PubMed Central  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197. https://doi.org/10.1093/aob/mcq053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C-F, Yamaji N, Nishimura M, Tajima S, Ma JF (2009a) A rice mutant sensitive to Al toxicity is defective in the specification of root outer cell layers. Plant Cell Physiol 50:976–985

    CAS  PubMed  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009b) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667. https://doi.org/10.1105/tpc.108.064543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yamaji N, Chen Z, Ma JF (2012) A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867. https://doi.org/10.1111/j.1365-313X.2011.04837.x

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260. https://doi.org/10.1146/annurev.pp.46.060195.001321

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    CAS  Google Scholar 

  • Kopittke PM, Blamey FPC (2016) Theoretical and experimental assessment of nutrient solution composition in short-term studies of aluminium rhizotoxicity. Plant Soil 406:311–326. https://doi.org/10.1007/s11104-016-2890-5

    Article  CAS  Google Scholar 

  • Kopittke PM, Gianoncelli A, Kourousias G, Green K, McKenna BA (2017) Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum. Front Plant Sci 8:2189

    PubMed  PubMed Central  Google Scholar 

  • Li X et al (2016) Cell wall pectin and its methyl-esterification in transition zone determine Al resistance in cultivars of pea (Pisum sativum). Front Plant Sci 7:39–47. https://doi.org/10.3389/fpls.2016.00039

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Yang C, Shi H (2001) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant Nutr 24:229–243. https://doi.org/10.1081/pln-100001384

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang J, He L, Li Y, Zheng S (2008) Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plant 52:87–92

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Ma JF et al (2006) A silicon transporter in rice. Nature 440:688–691. https://doi.org/10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    CAS  PubMed  Google Scholar 

  • Ma JF et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212. https://doi.org/10.1038/nature05964

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    CAS  PubMed  Google Scholar 

  • Ma JF, Sasaki M, Matsumoto H (1997a) Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant Soil 188:171–176

    CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997b) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    CAS  PubMed  Google Scholar 

  • Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    CAS  PubMed  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206:1063–1074

    CAS  PubMed  Google Scholar 

  • Magalhaes JV et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    CAS  PubMed  Google Scholar 

  • Manabe Y et al (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155:1068–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moustacas AM, Nari J, Borel M, Noat G, Ricard J (1991) Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem J 279:351–354. https://doi.org/10.1042/bj2790351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277. https://doi.org/10.1016/j.tplants.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  • Polle E, Konzak CF, Kattrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots 1. Crop Sci 18:823–827

    CAS  Google Scholar 

  • Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora ML, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci 8:642. https://doi.org/10.3389/fpls.2017.00642

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T et al (2004) A wheat gene encoding an aluminum activated malate transporter. Plant J 37:645–653

    CAS  PubMed  Google Scholar 

  • Shen R, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    CAS  PubMed  Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274. https://doi.org/10.1007/s12011-011-9118-6

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76:297–307

    CAS  PubMed  Google Scholar 

  • Sun C et al (2016) Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J Exp Bot 67:979–989. https://doi.org/10.1093/jxb/erv514

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    CAS  PubMed  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    CAS  PubMed  Google Scholar 

  • Wang Y-S, Yang Z-M (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    CAS  PubMed  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhao X, Chen RF, Dong XY, Lan P, Ma JF, Shen RF (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ 38:1382–1390

    CAS  PubMed  Google Scholar 

  • Willats WG et al (2000) Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohyd Res 327:309–320. https://doi.org/10.1016/s0008-6215(00)00039-2

    Article  CAS  Google Scholar 

  • Wu Z et al (2016) Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 131:173–180

    CAS  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385. https://doi.org/10.1073/pnas.1004949107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Riaz M, Liu J, Liu Y, Zeng Y, Jiang C (2020) Boron reduces aluminum deposition in alkali-soluble pectin and cytoplasm to release aluminum toxicity. J Hazard Mater 401:123388. https://doi.org/10.1016/j.jhazmat.2020.123388

    Article  CAS  PubMed  Google Scholar 

  • Yang JL et al (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY et al (2013) Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice. Physiol Plant 148:502–511

    CAS  PubMed  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, He Z, Tian H, Zhu G, Peng X (2007) Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. J Exp Bot 58:2269–2278

    CAS  PubMed  Google Scholar 

  • Zhang Q, Yan C, Liu J, Lu H, Duan H, Du J, Wang W (2014) Silicon alleviation of cadmium toxicity in mangrove (Avicennia marina) in relation to cadmium compartmentation. J Plant Growth Regul 33:233–242

    CAS  Google Scholar 

  • Zheng SJ, Yang JL (2005) Target sites of aluminum phytoxicity. Physiol Plant 49:321–331

    CAS  Google Scholar 

  • Zhong H, Lauchli A (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44:773–778

    CAS  Google Scholar 

  • Zhu XF et al (2012) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747. https://doi.org/10.1105/tpc.112.106039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu CQ et al (2018) Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice. Front Plant Sci 9:294–294

    PubMed  PubMed Central  Google Scholar 

  • Zhu CQ et al (2019a) Putrescine alleviates aluminum toxicity in rice (Oryza sativa) by reducing cell wall Al contents in an ethylene-dependent manner. Physiol Plant 167:471–487

    CAS  PubMed  Google Scholar 

  • Zhu CQ et al (2019b) Boron reduces cell wall aluminum content in rice (Oryza sativa) roots by decreasing H2O2 accumulation. Plant Physiol Biochem 138:80–90

    CAS  PubMed  Google Scholar 

  • Zsoldos F, Vashegyi A, Pecsvaradi A, Bona L (2003) Influence of silicon on aluminium toxicity in common and durum wheats. Agronomie 23:349–354. https://doi.org/10.1051/agro:2003008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from National Natural Science Foundation of China (Approved No. 31772387).

Author information

Authors and Affiliations

Authors

Contributions

ZXX and YCL designed the research plan; ZXX, GCY and MJY performed the research; ZXX analyzed the date. ZXX and YCL wrote the article. All authors read and approved the final article.

Corresponding author

Correspondence to Yongchao Liang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Jian Feng Ma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2.15 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Yan, G., Ye, M. et al. Silicon relieves aluminum‐induced inhibition of cell elongation in rice root apex by reducing the deposition of aluminum in the cell wall. Plant Soil 462, 189–205 (2021). https://doi.org/10.1007/s11104-021-04850-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04850-y

Keywords

Navigation