Skip to main content

Advertisement

Log in

A reputation-based cooperative content delivery with parking vehicles in vehicular ad-hoc networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In recent years, vehicular ad-hoc network (VANET) is getting a growing interest due to its significant function in terms of vehicle information services and vehicular entertainment applications. In particular, VANET enables parking vehicles (PVs) and roadside units (RSUs) to share their contents with mobile vehicles (MVs), which improves the efficiency of content delivery. However, content delivery in VANET still confronts with several challenges. Due to the selfishness of the PVs, an incentive mechanism is needed to motivate them to contribute their cached contents. Moreover, MVs may be threatened by the trustless or even malicious PVs. In this paper, we propose a reputation-based cooperative content delivery mechanism to improve the efficiency and security of content delivery. We formulate the relationships among MVs, RSUs, and PVs as the two-layer auction game. With the auction game, MVs find the optimal PV and RSU for delivering contents and offering the optimized rewards. In addition, we present a dynamic reputation evaluation model. Based on the feature of content delivery, this model incentivizes these honest PVs and isolates malicious PVs, which improves the security of content delivery. Finally, simulation results show that the proposed mechanism can not only improve the effectiveness of content delivery in VANET, but also avoid the attacks of malicious PVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Conti M, Giordano S (2014) Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Commun Mag 52(1):85–96

    Article  Google Scholar 

  2. Portal TS Connected cars as a share of total vehicles 2015-2025. 2019. [Online]. Available: https://www.statista.com/statistics/275849/number-of-vehicles-connected-to-the-internet

  3. International Transport Forum-Transport Outlook 2012: Seamless transport for greener growth. Accessed: Feb. 17, 2019. [Online]. Available: https://www.itfoecd.org/transport-outlook-2012-seamlesstransport-greener-growthhttps://www.itfoecd.org/transport-outlook-2012-seamlesstransport-greener-growth

  4. Wang X, Li Y (2020) Content delivery based on vehicular cloud. IEEE Trans Veh Technol 69 (2):2105–2113

    Article  Google Scholar 

  5. Fulman N, Benenson I (2019) Establishing heterogeneous parking prices for uniform parking availability for autonomous and human-driven vehicles. IEEE Trans Intell Transp Syst 11(1):15–28

    Google Scholar 

  6. Liu H, Qiu T, Zhou X, Chen C, Chen N (2020) Parking-area-assisted spider-web routing protocol for emergency data in urban VANET. IEEE Trans Veh Technol 69(1):971–982

    Article  Google Scholar 

  7. Sommer C, Eckhoff D, Dressler F (2014) IVC In cities: signal attenuation by buildings and how parked cars can improve the situation. IEEE Trans Mob Comput 13(8):1733–1745

    Article  Google Scholar 

  8. Su Z, Xu Q, Hui Y, Wen M, Guo S (2017) A game theoretic approach to parked vehicle assisted content delivery in vehicular ad hoc networks. IEEE Trans Veh Technol 66(7):6461–6474

    Article  Google Scholar 

  9. Su Z, Hui Y, Yang Q (2017) The next generation vehicular networks: a content-centric framework. IEEE Wirel Commun 24(1):60–66

    Article  Google Scholar 

  10. Elsayed SA, Abdelhamid S, Hassanein HS (2018) Proactive caching at parked vehicles for Social networking. IEEE Int Conf Commun (ICC):1–6

  11. Wang T, Song L, Han Z (2013) Coalitional graph games for popular content distribution in cognitive radio VANETs. IEEE Trans Veh Technol 62(8):4010–4019

    Article  Google Scholar 

  12. Zhou Z, Yu H, Xu C, Zhang Y, Mumtaz S, Rodriguez J (2018) Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Trans Intell Transp Syst 19(3):953–964

    Article  Google Scholar 

  13. Yao L, Chen A, Deng J, Wang J, Wu G (2018) A cooperative caching scheme based on mobility prediction in vehicular content centric networks. IEEE Trans Veh Technol 67(6):5435–5444

    Article  Google Scholar 

  14. Su Z, Hui Y, Xu Q, Yang T, Liu J, Jia Y (2018) An edge caching scheme to distribute content in vehicular networks. IEEE Trans Veh Technol 67(6):5346–5356

    Article  Google Scholar 

  15. Malandrino F, Casetti C, Chiasserini CF, Sommer C, Dressler F (2014) The role of parked cars in content downloading for vehicular networks. IEEE Trans Veh Technol 63(9):4606–4617

    Article  Google Scholar 

  16. Liu N, Liu M, Lou W, Chen G, Cao J (2011) PVA In VANETs: Stopped cars are not silent. In: Proceedings of IEEE INFOCOM, Shanghai

  17. Reis AB, Sargento S, Tonguz OK (2017) Parked cars are excellent roadside units. IEEE Trans Intell Transp Syst 18(9):2490–2502

    Article  Google Scholar 

  18. Dhurandher SK, Obaidat MS, Jaiswal A, Tiwari A, Tyagi A (2014) Vehicular security through reputation and plausibility checks. IEEE Syst J 8(2):384–394

    Article  Google Scholar 

  19. Lee CL, Chen Y, Huang YR (2017) Reputation management for efficient message transmission in vehicular ad hoc networks. Int J Innov Comput Inf Control 13(2):535–546

    Google Scholar 

  20. Gyawali S, Qian Y, Hu RQ Machine learning and reputation based misbehavior detection in vehicular communication networks. IEEE Trans Veh Technol. https://doi.org/10.1109/TVT.2020.2996620

  21. Engoulou RG, Bellaiche M, Halabi T, Pierre S (2019) A decentralized reputation management system for securing the internet of vehicles. 2019 International Conf. on Computing, Networking and Communications (ICNC), Honolulu, pp 900–904

  22. Tian Z, Gao X, Su S, Qiu J, Du X, Guizani M (2019) Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory. IEEE Trans Veh Technol 68(6):5971–5980

    Article  Google Scholar 

  23. Sun G, Yu M, Liao D, Chang V (2019) Analytical exploration of energy savings for parked vehicles to enhance VANET connectivity. IEEE Trans Intell Transp Syst 20(5):1749–1761

    Article  Google Scholar 

  24. Zhang J, Guo H, Liu J, Zhang Y (2020) Task offloading in vehicular edge computing networks: a load-balancing solution. IEEE Trans Veh Technol 69(2):2092–2104

    Article  Google Scholar 

  25. Sou S, Tonguz OK (2011) Enhancing VANET connectivity through roadside units on highways. IEEE Trans Veh Technol 60(8):3586–3602

    Article  Google Scholar 

  26. Xu Q, Su Z, Wang Y, Dai M (2018) A trustworthy content caching and bandwidth allocation scheme with edge computing for smart campus. IEEE Access 6:63868–63879

    Article  Google Scholar 

  27. Dowling CP, Ratliff LJ, Zhang B (2020) Modeling curbside parking as a network of finite capacity queues. IEEE Trans Intell Transp Syst 21(3):1011–1022

    Article  Google Scholar 

  28. Lin J, Chen S, Chang C, Chen G (2019) SPA: Smart Parking algorithm based on driver behavior and parking traffic predictions. IEEE Access 7:34275–34288

    Article  Google Scholar 

  29. Chen C, Hu J, Qiu T, Atiquzzaman M, Ren Z (2019) CVCG: Cooperative V2v-aided transmission scheme based on coalitional game for popular content distribution in vehicular ad-hoc networks. IEEE Trans Mob Comput 18(12):2811–2828

    Article  Google Scholar 

  30. Xu Q, Su Z, Zheng Q, Luo M, Dong B (2018) Secure content delivery with edge nodes to save caching resources for mobile users in green cities. IEEE Trans Ind Informat 14(6):2550–2559

    Article  Google Scholar 

  31. Su Z, Ren P, Gan X (2014) A novel algorithm to cache vehicular content with parked vehicles applications. IEEE Int. Conf. Commun., Sydney

  32. Xu Q, Su Z, Yu S, Wang Y (2017) Trust based incentive scheme to allocate big data tasks with mobile social cloud. IEEE Trans. Big Data

  33. Dai M, Li J, Su Z, Chen W, Xu Q, Fu S (2020) A privacy preservation based scheme for task assignment in internet of things. IEEE Trans. Netw. Sci. Eng.

  34. Xu Q, Su Z, Yang Q (2020) Blockchain-based trustworthy edge caching scheme for mobile cyber-physical system. IEEE Internet Things J 7(2):1098–1110

    Article  Google Scholar 

  35. Dai M, Su Z, Xu Q (2019) Location privacy preservation scheme based incentive for crowd-sensing networks. 2019 IEEE/CIC International Conference on Communications in China (ICCC), pp 695–699

Download references

Acknowledgments

This work is supported by Science and Technology Commission of Shanghai (No.15411953500) and the National Key Research and Development Program of China (No. 2019YFB1405500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Privacy-Preserving Computing

Guest Editors: Kaiping Xue, Zhe Liu, Haojin Zhu, Miao Pan and David S.L. Wei

Appendices

Appendix A

Proof of Theorem 1

We assume that the bidding strategy \(\left ({s_{i,j,q}^{*},r_{i,j,q}^{*}} \right )\) is not the optimal of PV j. Then, there must be another optimal bidding \(\left ({{{s^{\prime }}_{i,j,q}},{{r^{\prime }}_{i,j,q}},{{p^{\prime }}_{i,j,q}}} \right )\) to maximize the utility of PV j. Here, \(s_{i,j,q}^{*} \ne {s^{\prime }_{i,j,q}}\), \(r_{i,j,q}^{*} \ne {r^{\prime }_{i,j,q}}\). Let

$$ \begin{array}{@{}rcl@{}} {\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta {-} {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - {{s^{\prime}}_{i,j,q}}}}{{{r_{cloud}}}} {+} \frac{{{{s^{\prime}}_{i,j,q}}}}{{{{r^{\prime}}_{i,j,q}}}}} \right) {+} {{\upbeta}_{i,q}}{f_{q}}{{s^{\prime}}_{i,j,q}}} \right] - {{p^{\prime}}_{i,j,q}}\\ {=} {\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta {-} {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} {+} \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*}} \right] - p_{i,j,q}^{*}. \\ \end{array} $$
(26)

Therefore, we have

$$ \begin{array}{@{}rcl@{}} && {{p^{\prime}}_{i,j,q}} - {\xi_{i,j,q}}{\theta_{s}}{{s^{\prime}}_{i,j,q}} - {\xi_{i,j,q}}{\theta_{r}}{{r^{\prime}}_{i,j,q}} = p_{i,j,q}^{*} - \\ && {\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} + \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*}} \right]\\ && + {\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - {{s^{\prime}}_{i,j,q}}}}{{{r_{cloud}}}} + \frac{{{{s^{\prime}}_{i,j,q}}}}{{{{r^{\prime}}_{i,j,q}}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}{{s^{\prime}}_{i,j,q}}} \right] \\ && - {\xi_{i,j,q}}{\theta_{s}}{{s^{\prime}}_{i,j,q}} - {\xi_{i,j,q}}{\theta_{r}}{{r^{\prime}}_{i,j,q}} \leqslant p_{i,j,q}^{*} - \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} &&{\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} + \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*}} \right]\\ && {\text{ + }}{\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} + \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*}} \right]\\ && - {\xi_{i,j,q}}{\theta_{s}}s_{i,j,q}^{*} - {\xi_{i,j,q}}{\theta_{r}}r_{i,j,q}^{*} \\ && = p_{i,j,q}^{*} - {\xi_{i,j,q}}{\theta_{s}}s_{i,j,q}^{*} - {\xi_{i,j,q}}{\theta_{r}}r_{i,j,q}^{*}. \end{array} $$

Obviously, Eq. (27) is contradictory to the initial assumption. Therefore, the bidding strategy \(\left ({s_{i,j,q}^{*},r_{i,j,q}^{*}} \right )\) is optimal.

Equation 13 is a binary function denoted as f(si, j, q,ri, j, q). PV changes si, j, q and ri, j, q to maximize this function. The maximum value can be obtained at the boundaries \({r_{i,j,q}}{\text { = }}r_{i,j,q}^{{\min \limits } }\), \({r_{i,j,q}}{\text { = }}r_{i,j,q}^{{\max \limits } }\), \({s_{i,j,q}}{\text { = }}s_{i,j,q}^{{\min \limits } }\), \({s_{i,j,q}}{\text { = }}s_{i,j,q}^{{\max \limits } }\) and the stagnation point of the function. By taking the first partial derivatives on the four boundaries of the function f(si, j, q,ri, j, q), we have

$$ \begin{aligned} \frac{{\partial f({s_{i,j,q}},r_{i,j,q}^{\min })}}{{\partial {s_{i,j,q}}}} = {\text{Re}}{{\text{p}}_{i,j}}\bigg[& - {\alpha_{i,q}}{f_{q}}\left( { - \frac{1}{{{r_{cloud}}}} + \frac{1}{{r_{i,j,q}^{\min }}}} \right) \\ &+{{\upbeta}_{i,q}}{f_{q}} \bigg] - {\xi_{i,j,q}}{\theta_{s}}, \end{aligned} $$
(28)
$$ \begin{aligned} \frac{{\partial f({s_{i,j,q}},r_{i,j,q}^{\max })}}{{\partial {s_{i,j,q}}}} = {\text{Re}}{{\text{p}}_{i,j}}\bigg[& - {\alpha_{i,q}}{f_{q}}\left( { - \frac{1}{{{r_{cloud}}}} + \frac{1}{{r_{i,j,q}^{\max }}}} \right) \\ &{+{\upbeta}_{i,q}}{f_{q}} \bigg] - {\xi_{i,j,q}}{\theta_{s}}, \end{aligned} $$
(29)
$$ \frac{{\partial f(s_{i,j,q}^{\min },{r_{i,j,q}})}}{{\partial {r_{i,j,q}}}} = \frac{{{\text{Re}}{{\text{p}}_{i,j}}{\alpha_{i,q}}{f_{q}}s_{i,j,q}^{\min }}}{{r_{i,j,q}^{2}}} - {\xi_{i,j,q}}{\theta_{r}}, $$
(30)
$$ \frac{{\partial f(s_{i,j,q}^{\max },{r_{i,j,q}})}}{{\partial {r_{i,j,q}}}} = \frac{{{\text{Re}}{{\text{p}}_{i,j}}{\alpha_{i,q}}{f_{q}}s_{i,j,q}^{\max }}}{{r_{i,j,q}^{2}}} - {\xi_{i,j,q}}{\theta_{r}}. $$
(31)

By taking the first partial derivative of the function f(si, j, q,ri, j, q), we can get the stagnation point

$$ \left\{ \begin{array}{ll} {{\tilde s}_{i,j,q}}{\text{ = }}{{{\text{Re}}{{\text{p}}_{i,j}}{\xi_{i,j,q}}{\theta_{r}}{\alpha_{i,q}}{f_{q}}r_{cloud}^{2}} {\left/ {\vphantom {{\operatorname{Re} {{\text{p}}_{i,j}}{\xi_{i,j,q}}{\theta_{r}}{\alpha_{i,q}}{f_{q}}r_{cloud}^{2}} {\left( {r_{cloud}^{2}\xi_{i,j,q}^{2}{\theta_{s}^{2}} - } \right.}}} \right.} {\left( {r_{cloud}^{2}\xi_{i,j,q}^{2}{\theta_{s}^{2}} } \right.}} \\ -2r_{cloud}^{2}{\text{Re}}{{\text{p}}_{i,j}}{\xi_{i,j,q}}{{\upbeta}_{i,q}}{f_{q}}\theta + r_{cloud}^{2}{\text{Rep}}_{i,j}^{2}{\upbeta}_{i,q}^{2}{f_{q}^{2}} \\ +\operatorname{Re} {\text{p}}_{i,j}^{2}\alpha_{i,q}^{2}{f_{q}^{2}} - 2{r_{cloud}}{\text{Re}}{{\text{p}}_{i,j}}{\xi_{i,j,q}}{\alpha_{i,q}}{f_{q}}{\theta_{s}}{\text{ }} \\ \left. {+2{r_{cloud}}{\text{Rep}}_{i,j}^{2}{\alpha_{i,q}}{{\upbeta}_{i,q}}{f_{q}^{2}}} \right), \\ {{\tilde r}_{i,j,q}}{ { = }}{{\text{Re} {{\text{p}}_{i,j}}{\alpha_{i,q}}{f_{q}}{r_{cloud}}} {\left/ {\vphantom {{\operatorname{Re} {{\text{p}}_{i,j}}{\alpha_{i,q}}{f_{q}}{r_{cloud}}} {\left( {\operatorname{Re} {{\text{p}}_{i,j}}{r_{cloud}}{{\upbeta}_{i,q}}{f_{q}}} \right. + }}} \right.} {\left( {{\text{Re}}{{\text{p}}_{i,j}}{r_{cloud}}{{\upbeta}_{i,q}}{f_{q}}} \right. }} \\ \left. { +{\text{Re}}{{\text{p}}_{i,j}}{\alpha_{i,q}}{f_{q}} - {r_{cloud}}{\xi_{i,j,q}}{\theta_{s}}} \right). \\ \end{array} \right. $$
(32)

Therefore, the optimal bidding strategy of PV j can be expressed as

$$ \begin{array}{@{}rcl@{}} && \left\{ {s_{i,j,q}^{*},r_{i,j,q}^{*}} \right\} = \\ && \underset{{{s_{i,j,q}},{r_{i,j,q}} \in {{\Delta}_{i,j,q}}}}{\arg \max } \left\{ {{\text{Re}}{{\text{p}}_{i,j}}\left[ {\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - {s_{i,j,q}}}}{{{r_{cloud}}}}} \right.} \right.} \right. \\ && \left. {\left. {\left. {{ { + }}\frac{{{s_{i,j,q}}}}{{{r_{i,j,q}}}}} \right) + {{\upbeta}_{i,q}}{f_{q}}{s_{i,j,q}}} \right] - {\xi_{i,j,q}}{\theta_{s}}{s_{i,j,q}} - {\xi_{i,j,q}}{\theta_{r}}{r_{i,j,q}}} \right\}. \\ \end{array} $$
(33)

Here, \({{\Delta }_{i,j,q}}{\text { = }}\left \{ {\left ({s_{_{i,j,q}}^{1},r_{i,j,q}^{1}} \right ), {\ldots } ,\left ({s_{_{i,j,q}}^{5},r_{i,j,q}^{5}} \right )} \right \}\) is the set of candidate points on stagnation point and boundaries.

This completes our proof.

Appendix B

Proof of Theorem 2

When the optimal content size \(s_{i,j,q}^{*}\) and transmission rate \(r_{i,j,q}^{*}\) are determined by PV j, the utility of RSU i can be rewritten as

$$ \begin{array}{@{}rcl@{}} && \tilde u_{i,j,q}^{RSU} = \text{Re}\text{p}_{i,j}\bigg[ \delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} + \hfill \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) +\\ && \qquad\qquad\qquad{{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*} \bigg] - {p_{i,j,q}}. \end{array} $$
(34)

When the bidding price of PV j is equal to the cost price, the utility of RSU i can be maximized. The maximum utility of RSU i can be calculated by

$$ \begin{array}{@{}rcl@{}} {\varphi_{i,j,q}} = \text{Re}\text{p}_{i,j}\bigg[\delta - {\alpha_{i,q}}{f_{q}}\left( {\frac{{{S_{q}} - s_{i,j,q}^{*}}}{{{r_{cloud}}}} + \frac{{s_{i,j,q}^{*}}}{{r_{i,j,q}^{*}}}} \right) +\\ {{\upbeta}_{i,q}}{f_{q}}s_{i,j,q}^{*} \bigg] - {\xi_{i,j,q}}{\theta_{s}}s_{i,j,q}^{*} - {\xi_{i,j,q}}{\theta_{r}}r_{i,j,q}^{*}. \end{array} $$
(35)

Combining Eq. (34) and Eq. (35), the expected utility of PV j can be expressed as

$$ E\left\{ {u_{i,j,q}^{PV}} \right\} = {\mathbb{P}_{i,j}}({\varphi_{i,j,q}} - \tilde u_{i,j,q}^{RSU}), $$
(36)

where \({\mathbb {P}_{i,j}}\) is the probability that PV j wins the game. Note that RSU i wants to select the PV to obtain the maximum utility. Namely, we can obtain

$$ u_{i,j,q}^{RSU {\text{*}} } = \max \left\{ {\tilde u_{i,j,q}^{RSU}|j = 1,2, {\ldots} N} \right\}, $$
(37)

where N is the number of PVs with content q parked around RSU i. Thus, \({\mathbb {P}_{i,j}}\) also means that the probability of PV j to maximize the utility of RSU i. It can be calculated by

$$ {\mathbb{P}_{i,j}} = \prod\limits_{j^{\prime} = 1,j^{\prime} \ne j,{X_{i,j,q}} = 1}^{J} {P\left\{ {\tilde u_{i,j,q}^{RSU} > \tilde u_{i,j^{\prime},q}^{RSU}} \right\}}. $$
(38)

Let \(\tilde u_{i,j,q}^{RSU} = {\omega _{i,j,q}}\left ({{\varphi _{i,j,q}}} \right )\) represent the relationship function between φi, j, q and \(\tilde u_{i,j,q}^{RSU}\). The greater the φi, j, q, the higher the social welfare. It also means that PV j has more choices in its bidding price. Therefore, the function \({\omega _{i,j,q}}\left (\cdot \right )\) is an increasing function, we can have

$$ \begin{aligned} P\left\{ {\tilde u_{i,j,q}^{RSU} > \tilde u_{i,j^{\prime},q}^{RSU}} \right\} &= P\left\{ {{\varphi_{i,j,q}} > {\varphi_{i,j^{\prime},q}}} \right\} \\ &= P\left\{ {{\xi_{i,j,q}} < {\xi_{i,j^{\prime},q}}} \right\} \\ &= 1 - {\Phi} \left( {{\xi_{i,j,q}}} \right), \end{aligned} $$
(39)

where \({\Phi } \left (\cdot \right )\) is the probability distribution function of the cost parameter \({\xi _{i,j^{\prime },q}}\) of PV \(j^{\prime }\). Therefore, the probability \({\mathbb {P}_{i,j}}\) can be rewritten as

$$ {\mathbb{P}_{i,j}} = {\left( {1 - {\Phi} \left( {{\xi_{i,j,q}}} \right)} \right)^{N - 1}}. $$
(40)

We set \({\mathbb {P}_{i,j}} = H\left ({{\varphi _{i,j,q}}} \right )\) to reflect the relationship between φi, j, q and the probability \({\mathbb {P}_{i,j}}\). Thus, we have

$$ {\mathbb{P}_{i,j}} = H\left( {{\varphi_{i,j,q}}} \right) = H\left( {{\omega_{i,j,q}}^{- 1}\left( {\tilde u_{i,j,q}^{RSU}} \right)} \right). $$
(41)

Then, the expected utility of PV j can be rewritten as

$$ E\left\{ {u_{i,j,q}^{PV}} \right\} = H\left( {{\omega_{i,j,q}}^{- 1}\left( {\tilde u_{i,j,q}^{RSU}} \right)} \right) \cdot ({\varphi_{i,j,q}} - \tilde u_{i,j,q}^{RSU}). $$
(42)

The first derivative of \(E\left \{ {u_{i,j,q}^{PV}} \right \}\) with respect to \({\tilde u_{i,j,q}^{RSU}}\) can be calculated by

$$ \begin{array}{@{}rcl@{}} \frac{{\partial E\left\{ {u_{i,j,q}^{PV}} \right\}}}{{\partial \tilde u_{i,j,q}^{RSU}}} & = & \frac{{({\varphi_{i,j,q}} - \tilde u_{i,j,q}^{RSU}) \cdot \dot H\left( {{\omega_{i,j,q}}^{- 1}\left( {\tilde u_{i,j,q}^{RSU}} \right)} \right)}}{{{\omega '}_{_{i,j,q}}}\left( {{\varphi_{i,j,q}}} \right)}\\ && - H\left( {{\omega_{i,j,q}}^{- 1}\left( {\tilde u_{i,j,q}^{RSU}} \right)} \right). \end{array} $$
(43)

where \(\dot H\left (\cdot \right )\) is the derivative of the function \(H\left (\cdot \right )\) to \(\tilde u_{i,j,q}^{RSU}\). Let \(\frac {{\partial E\left \{ {u_{i,j,q}^{PV}} \right \}}}{{\partial \tilde u_{i,j,q}^{RSU}}} = 0\), we have

$$ \frac{{\partial \left[ {H\left( {{\varphi_{i,j,q}}} \right) \cdot {\omega_{i,j,q}}\left( {{\varphi_{i,j,q}}} \right)} \right]}}{{\partial {\varphi_{i,j,q}}}} = \dot H\left( {{\varphi_{i,j,q}}} \right) \cdot {\varphi_{i,j,q}}. $$
(44)

By solving Eq. (44), we can obtain

$$ {\omega_{i,j,q}}\left( {{\varphi_{i,j,q}}} \right) = \frac{1}{{H\left( {{\varphi_{i,j,q}}} \right)}}{\int}_{0}^{{\varphi_{i,j,q}}} {\dot H\left( x \right)} \cdot x \cdot dx. $$
(45)

By solving the integral equation in Eq. (45), we have

$$ {\omega_{i,j,q}}\left( {{\varphi_{i,j,q}}} \right) {=} \tilde u_{i,j,q}^{RSU} {=} {\varphi_{i,j,q}} {-} \frac{1}{{H\left( {{\varphi_{i,j,q}}} \right)}}{\int}_{0}^{{\varphi_{i,j,q}}} {H\left( y \right)} dy. $$
(46)

Substituting \(\tilde u_{i,j,q}^{RSU}\) and φi, j, q into Eq. (45), we can obtain the optimal bidding price of PV j

$$ \begin{array}{@{}rcl@{}} p_{i,j,q}^{\text{*}} & = & {\xi_{i,j,q}}{\theta_{s}}s_{i,j,q}^{*} + {\xi_{i,j,q}}{\theta_{r}}r_{i,j,q}^{*}\\ && + \frac{1}{{H\left( {{\varphi_{i,j,q}}} \right)}}{\int}_{0}^{{\varphi_{i,j,q}}} {H\left( y \right)} dy, \end{array} $$
(47)

where \(H\left ({{\varphi _{i,j,q}}} \right ) = {\mathbb {P}_{i,j}} = {\left ({1 - {\Phi } \left ({{\xi _{i,j,q}}} \right )} \right )^{N - 1}}\). Since ξi, j, q obeys the uniform distribution, we can obtain

$$ {\Phi} \left( {{\xi_{i,j,q}}} \right) = \frac{{{\xi_{i,j,q}} - \xi_{i,j,q}^{\min }}}{{\xi_{i,j,q}^{\max } - \xi_{i,j,q}^{\min }}}. $$
(48)

Therefore, the optimal bidding price of PV j is

$$ \begin{array}{@{}rcl@{}} p_{i,j,q}^{\text{*}} & = & {\xi_{i,j,q}}{\theta_{s}}s_{i,j,q}^{*} + {\xi_{i,j,q}}{\theta_{r}}r_{i,j,q}^{*}\\ && + \frac{{\left( {{\theta_{s}}s_{i,j,q}^{*} + {\theta_{r}}r_{i,j,q}^{*}} \right)}}{N}\left( {\xi_{i,j,q}^{\max } - {\xi_{i,j,q}}} \right). \end{array} $$
(49)

This completes our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Xu, Y. & Su, Z. A reputation-based cooperative content delivery with parking vehicles in vehicular ad-hoc networks. Peer-to-Peer Netw. Appl. 14, 1531–1547 (2021). https://doi.org/10.1007/s12083-020-01064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-01064-4

Keywords

Navigation