Skip to main content
Log in

A generalized integro-differential theory of nonlocal elasticity of n-Helmholtz type—part II: boundary-value problems in the one-dimensional case

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper is the second in a series of two that deal with a generalized theory of nonlocal elasticity of n-Helmholtz type. This terminology is motivated by the fact that the attenuation function (kernel) of the integral type nonlocal constitutive equation is the Green function associated with a generalized Helmholtz differential operator of order n. In the first paper, the governing equations have been derived and supported by suitable thermodynamic arguments. In this second paper, the proposed nonlocal model is specialized for the one-dimensional case to solve boundary-value problems. First, the relevant higher-order nonstandard boundary conditions in the differential (or, more precisely, integro-differential) version of the theory are derived. These boundary conditions are consistent with the particular family of attenuation functions adopted in the integral formulation. Then, some simple applications to statics and dynamics problems are presented. In particular, the theory is used to capture the static response and to perform free vibration analysis of a discrete lattice model with periodic microstructure (mass-and-spring chain) featured by nearest neighbor and next nearest neighbor particle interactions. In the latter case, boundary effects arise at the two lattice ends that are well captured by the proposed nonlocal continuum formulation. The nonlocal material parameters are identified a priori by matching the dispersion curve of the discrete lattice model, and a comparison in terms of attenuation function is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  2. Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21(4):313–342

    Google Scholar 

  3. Altan SB (1989) Uniqueness of the initial-value problem in nonlocal elastic solids. Int J Solids Struct 25:1271–1278

    Article  Google Scholar 

  4. Fuschi P, Pisano AA, De Domenico D (2015) Plane stress problems in nonlocal elasticity: finite element solutions with a strain-difference-based formulation. J Math Anal Appl 431:714–736

    Article  MathSciNet  Google Scholar 

  5. Eringen AC (1992) Vistas of nonlocal continuum physics. Int J Eng Sci 30:1551–1565

    Article  MathSciNet  Google Scholar 

  6. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  7. Lazar M, Maugin GM, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmoltz type and some applications. Int J Solids Struct 43:1404–1421

    Article  Google Scholar 

  8. Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40(26):7399–7423

    Article  Google Scholar 

  9. Protter MH, Morrey CB Jr (1985) Intermediate calculus, 2nd edn. Springer, New York. ISBN 0-387-96058-9

    Book  Google Scholar 

  10. Askes H, Aifantis EC (2006) Gradient elasticity theories in statics and dynamics—a unification of approaches. Int J Fract 139:297–304

    Article  Google Scholar 

  11. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  12. Askes H, Bennett T, Aifantis EC (2007) A new formulation and C0-implementation of dynamically consistent gradient elasticity. Int J Numer Methods Eng 72:111–126

    Article  Google Scholar 

  13. Polizzotto C (2013) A second strain gradient elasticity theory with second velocity gradient inertia—part II: dynamic behavior. Int J Solids Struct 50(24):3766–3777

    Article  Google Scholar 

  14. De Domenico D, Askes H (2016) A new multi-scale dispersive gradient elasticity model with micro-inertia: formulation and C0-finite element implementation. Int J Numer Methods Eng 108(5):308–333

    Article  Google Scholar 

  15. De Domenico D, Askes H (2017) Computational aspects of a new multi-scale dispersive gradient elasticity model with micro-inertia. Int J Numer Methods Eng 109(1):52–72

    Article  MathSciNet  Google Scholar 

  16. De Domenico D, Askes H (2018) Stress gradient, strain gradient and inertia gradient beam theories for the simulation of flexural wave dispersion in carbon nanotubes. Compos Part B Eng 153:285–294

    Article  Google Scholar 

  17. De Domenico D, Askes H, Aifantis EC (2018) Capturing wave dispersion in heterogeneous and microstructured materials through a three-length-scale gradient elasticity formulation. J Mech Behav Mater 27(5–6):1–8

    Google Scholar 

  18. De Domenico D, Askes H (2018) Nano-scale wave dispersion beyond the First Brillouin Zone simulated with inertia gradient continua. J Appl Phys 124(20):205107

    Article  Google Scholar 

  19. De Domenico D, Askes H, Aifantis EC (2019) Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. Int J Solids Struct 158:176–190

    Article  Google Scholar 

  20. Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: generic formulation. Eur J Mech A Solids 21:555–572

    Article  Google Scholar 

  21. Metrikine AV, Askes H (2006) An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos Mag 86:3259–3286

    Article  Google Scholar 

  22. Challamel N, Rakotomanana L, Le Marrec L (2009) A dispersive wave equation using nonlocal elasticity. C R Mecanique 337:591–595

    Article  Google Scholar 

  23. Fuschi P, Pisano AA, Polizzotto C (2019) Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int J Mech Sci 151:661–671

    Article  Google Scholar 

  24. Pisano AA, Fuschi P, Polizzotto C (2020) A strain-difference based nonlocal elasticity theory for small-scale shear-deformable beams with parametric warping. Int J Multiscale Comput Eng 18(1):83–102

    Article  Google Scholar 

Download references

Acknowledgements

This research work is the result of fruitful scientific discussions of the authors with Prof. Elias C. Aifantis. This article is dedicated to his academic career and achievements on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario De Domenico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Nonstandard boundary conditions of order n applied to nonlocal strain of order less than n

Appendix A: Nonstandard boundary conditions of order n applied to nonlocal strain of order less than n

In this Appendix, we present some supplemental nonstandard boundary conditions that useful for the determination of the eigenfunctions \(\phi (x)\) in the free vibration analysis. These supplemental relationships arise from applying the nonstandard boundary conditions of order n, i.e. involving n \({\mathscr{L}}\) differential operators, to nonlocal strain of order of order k less than n, i.e., \(k = 1,2, \ldots ,n - 1\). Let us consider the expression of \(\bar{\varepsilon }_{x}^{(1)} (x)\) given in (33). By exploiting the Leibniz integral rule (36), the nonstandard boundary conditions for \(n = 2\) as per (41) and (42) applied to \(\bar{\varepsilon }_{x}^{(1)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} ( - )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} = \left. {\left[ {\left( {1 - (c_{1} + c_{2} )\frac{d}{dx} + c_{1} c_{2} \frac{{d^{2} }}{{dx^{2} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = 0} = - \frac{{c_{2} }}{{c_{1} }}\varepsilon_{x} (0), \\ & {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} = \left. {\left[ {\left( {1 - c_{2} \frac{d}{dx} - c_{1}^{2} \frac{{d^{2} }}{{dx^{2} }} + c_{1}^{2} c_{2} \frac{{d^{3} }}{{dx^{3} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = 0} = \varepsilon_{x} (0) - c_{2} \varepsilon_{x} '(0), \\ & {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} ( + )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} = \left. {\left[ {\left( {1 + (c_{1} + c_{2} )\frac{d}{dx} + c_{1} c_{2} \frac{{d^{2} }}{{dx^{2} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = L} = - \frac{{c_{2} }}{{c_{1} }}\varepsilon_{x} (L), \\ & {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} = \left. {\left[ {\left( {1 + c_{2} \frac{d}{dx} - c_{1}^{2} \frac{{d^{2} }}{{dx^{2} }} - c_{1}^{2} c_{2} \frac{{d^{3} }}{{dx^{3} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = L} = \varepsilon_{x} (L) + c_{2} \varepsilon_{x} '(L). \\ \end{aligned}$$
(127)

By extending this result, the nonstandard boundary conditions for \(n = 3\) as per (44) and (45) applied to \(\bar{\varepsilon }_{x}^{(1)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( - )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad \left. { = \left[ {\left( {1 - (c_{1} + c_{2} + c_{3} )\frac{d}{dx} + (c_{1} c_{2} + c_{1} c_{3} + c_{2} c_{3} )\frac{{d^{2} }}{{dx^{2} }} - c_{1} c_{2} c_{3} \frac{{d^{3} }}{{dx^{3} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = 0} \\ & \quad = - \frac{{\left( {c_{2} c_{3} + c_{1} c_{2} + c_{1} c_{3} } \right)}}{{c_{1}^{2} }}\varepsilon_{x} (0) + \frac{{c_{1} c_{2} c_{3} }}{{c_{1}^{2} }}\varepsilon_{x}^{'} (0), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = \left. {\left[ {\left( {1 - (c_{2} + c_{3} )\frac{d}{dx} + (c_{2} c_{3} - c_{1}^{2} )\frac{{d^{2} }}{{dx^{2} }} + (c_{1}^{2} c_{2} + c_{1}^{2} c_{3} )\frac{{d^{3} }}{{dx^{3} }} - c_{1}^{2} c_{2} c_{3} \frac{{d^{4} }}{{dx^{4} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - \left( {c_{2} + c_{3} } \right)\varepsilon_{x}^{'} (0) + c_{2} c_{3} \varepsilon_{x}^{''} (0), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = \left. {\left[ {\left( {1 - c_{3} \frac{d}{dx} - (c_{1}^{2} + c_{2}^{2} )\frac{{d^{2} }}{{dx^{2} }} + (c_{1}^{2} c_{3} + c_{2}^{2} c_{3} )\frac{{d^{3} }}{{dx^{3} }} + c_{1}^{2} c_{2}^{2} \frac{{d^{4} }}{{dx^{4} }} - c_{1}^{2} c_{2}^{2} c_{3} \frac{{d^{5} }}{{dx^{5} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - c_{3} \varepsilon_{x}^{'} (0) - c_{2}^{2} \varepsilon_{x}^{''} (0) + c_{2}^{2} c_{3} \varepsilon_{x}^{'''} (0), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( + )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} \\ & \quad \left. { = \left[ {\left( {1 + (c_{1} + c_{2} + c_{3} )\frac{d}{dx} + (c_{1} c_{2} + c_{1} c_{3} + c_{2} c_{3} )\frac{{d^{2} }}{{dx^{2} }} + c_{1} c_{2} c_{3} \frac{{d^{3} }}{{dx^{3} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = L} \\ & \quad = - \frac{{\left( {c_{2} c_{3} + c_{1} c_{2} + c_{1} c_{3} } \right)}}{{c_{1}^{2} }}\varepsilon_{x} (L) + \frac{{c_{1} c_{2} c_{3} }}{{c_{1}^{2} }}\varepsilon_{x}^{'} (L), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} \\ & \quad \left. { = \left[ {\left( {1 + (c_{2} + c_{3} )\frac{d}{dx} + (c_{2} c_{3} - c_{1}^{2} )\frac{{d^{2} }}{{dx^{2} }} - (c_{1}^{2} c_{2} + c_{1}^{2} c_{3} )\frac{{d^{3} }}{{dx^{3} }} - c_{1}^{2} c_{2} c_{3} \frac{{d^{4} }}{{dx^{4} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + \left( {c_{2} + c_{3} } \right)\varepsilon_{x}^{'} (L) + c_{2} c_{3} \varepsilon_{x}^{''} (L), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} \\ & \quad \left. { = \left[ {\left( {1 + c_{3} \frac{d}{dx} - (c_{1}^{2} + c_{2}^{2} )\frac{{d^{2} }}{{dx^{2} }} - (c_{1}^{2} c_{3} + c_{2}^{2} c_{3} )\frac{{d^{3} }}{{dx^{3} }} + c_{1}^{2} c_{2}^{2} \frac{{d^{4} }}{{dx^{4} }} + c_{1}^{2} c_{2}^{2} c_{3} \frac{{d^{5} }}{{dx^{5} }}} \right)\bar{\varepsilon }_{x}^{(1)} (x)} \right]} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + c_{3} \varepsilon_{x}^{'} (L) - c_{2}^{2} \varepsilon_{x}^{''} (L) - c_{2}^{2} c_{3} \varepsilon_{x}^{'''} (L). \\ \end{aligned}$$
(128)

And, finally, the nonstandard boundary conditions for \(n = 4\) as per (46) applied to \(\bar{\varepsilon }_{x}^{(1)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( - )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = - \frac{{\left( {c_{2} c_{3} c_{4} + c_{1} c_{3} c_{4} + c_{1} c_{2} c_{3} + c_{1} c_{2} c_{4} + c_{1}^{2} \left( {c_{2} + c_{3} + c_{4} } \right)} \right)}}{{c_{1}^{3} }}\varepsilon_{x} (0) \\ & \quad - \frac{{\left( {c_{1}^{2} c_{2} c_{3} - c_{1}^{2} c_{2} c_{4} - c_{1}^{2} c_{3} c_{4} - c_{1} c_{2} c_{3} c_{4} } \right)}}{{c_{1}^{3} }}\varepsilon_{x}^{'} (0) - \frac{{\left( {c_{2} c_{3} c_{4} } \right)}}{{c_{1} }}\varepsilon_{x}^{''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - \left( {c_{2} + c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (0) + \left( {c_{2} c_{3} + c_{2} c_{4} + c_{3} c_{4} } \right)\varepsilon_{x}^{''} (0) - \left( {c_{2} c_{3} c_{4} } \right)\varepsilon_{x}^{'''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - \left( {c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (0) + \left( {c_{3} c_{4} - c_{2}^{2} } \right)\varepsilon_{x}^{''} (0) + \left( {c_{2}^{2} c_{3} + c_{2}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (0) - \left( {c_{2}^{2} c_{3} c_{4} } \right)\varepsilon_{x}^{''''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} \;(3)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - \left( {c_{4} } \right)\varepsilon_{x}^{'} (0) - \left( {c_{2}^{2} - c_{3}^{2} } \right)\varepsilon_{x}^{''} (0) + \left( {c_{2}^{2} c_{4} + c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (0) + \left( {c_{2}^{2} c_{3}^{2} } \right)\varepsilon_{x}^{''''} (0) - \left( {c_{2}^{2} c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( + )}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} \\ & \quad = - \frac{{\left( {c_{2} c_{3} c_{4} + c_{1} c_{3} c_{4} + c_{1} c_{2} c_{3} + c_{1} c_{2} c_{4} + c_{1}^{2} \left( {c_{2} + c_{3} + c_{4} } \right)} \right)}}{{c_{1}^{3} }}\varepsilon_{x} (L) \\ & \quad + \frac{{\left( {c_{1}^{2} c_{2} c_{3} - c_{1}^{2} c_{2} c_{4} - c_{1}^{2} c_{3} c_{4} - c_{1} c_{2} c_{3} c_{4} } \right)}}{{c_{1}^{3} }}\varepsilon_{x}^{'} (0) - \frac{{\left( {c_{2} c_{3} c_{4} } \right)}}{{c_{1} }}\varepsilon_{x}^{''} (L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(4)} (x)} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + \left( {c_{2} + c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (L) + \left( {c_{2} c_{3} + c_{2} c_{4} + c_{3} c_{4} } \right)\varepsilon_{x}^{''} (L) + \left( {c_{2} c_{3} c_{4} } \right)\varepsilon_{x}^{'''} (L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(4)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(4)} (x)} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + \left( {c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (L) + \left( {c_{3} c_{4} - c_{2}^{2} } \right)\varepsilon_{x}^{''} (L) - \left( {c_{2}^{2} c_{3} + c_{2}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (L) - \left( {c_{2}^{2} c_{3} c_{4} } \right)\varepsilon_{x}^{''''} (L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(4)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} \;(3)}} \left. {\bar{\varepsilon }_{x}^{(4)} (x)} \right|_{x = L} \\ & \quad = \varepsilon_{x} (0) + \left( {c_{4} } \right)\varepsilon_{x}^{'} (L) - \left( {c_{2}^{2} + c_{3}^{2} } \right)\varepsilon_{x}^{''} (L) - \left( {c_{2}^{2} c_{4} + c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (L) + \left( {c_{2}^{2} c_{3}^{2} } \right)\varepsilon_{x}^{''''} (L) + \left( {c_{2}^{2} c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''''} (L). \\ \end{aligned}$$
(129)

Now, let us consider the expression of \(\bar{\varepsilon }_{x}^{(2)} (x)\) given in (37). The nonstandard boundary conditions for \(n = 3\) as per (44) and (45) applied to \(\bar{\varepsilon }_{x}^{(2)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( - )}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = \cdots = 0, \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = \cdots = - \frac{{c_{3} }}{{c_{2} }}\varepsilon_{x} (0), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = 0} = \cdots = \varepsilon_{x} (0) - c_{3} \varepsilon_{x}^{'} (0), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( + )}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = \cdots = 0, \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = \cdots = - \frac{{c_{3} }}{{c_{2} }}\varepsilon_{x} (L), \\ & {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(1)} (x)} \right|_{x = L} = \cdots = \varepsilon_{x} (L) + c_{3} \varepsilon_{x}^{'} (L). \\ \end{aligned}$$
(130)

And, finally, the nonstandard boundary conditions for \(n = 4\) as per (46) applied to \(\bar{\varepsilon }_{x}^{(2)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( - )}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = \cdots = \frac{{c_{3} c_{4} }}{{c_{1} c_{2} }}\varepsilon_{x} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = \cdots = - \frac{{\left( {c_{3} c_{4} + c_{2} c_{3} + c_{2} c_{4} } \right)}}{{c_{2}^{2} }}\varepsilon_{x} (0) + \frac{{\left( {c_{2} c_{3} c_{4} } \right)}}{{c_{2}^{2} }}\varepsilon_{x} '(0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - \left( {c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (0) + \left( {c_{3} c_{4} } \right)\varepsilon_{x}^{''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} \;(3)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = 0} \\ & \quad = \varepsilon_{x} (0) - c_{4} \varepsilon_{x}^{'} (0) - c_{3}^{2} \varepsilon_{x}^{''} (0) + \left( {c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;( + )}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = \cdots = \frac{{c_{3} c_{4} }}{{c_{1} c_{2} }}\varepsilon_{x} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = \cdots = - \frac{{\left( {c_{3} c_{4} + c_{2} c_{3} + c_{2} c_{4} } \right)}}{{c_{2}^{2} }}\varepsilon_{x} (L) - \frac{{\left( {c_{2} c_{3} c_{4} } \right)}}{{c_{2}^{2} }}\varepsilon_{x} '(L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} \;(2)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + \left( {c_{3} + c_{4} } \right)\varepsilon_{x}^{'} (L) + \left( {c_{3} c_{4} } \right)\varepsilon_{x}^{''} (L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} \;(1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} \;(1)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} \;( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} \;(3)}} \left. {\bar{\varepsilon }_{x}^{(2)} (x)} \right|_{x = L} \\ & \quad = \varepsilon_{x} (L) + c_{4} \varepsilon_{x}^{'} (L) - c_{3}^{2} \varepsilon_{x}^{''} (L) - \left( {c_{3}^{2} c_{4} } \right)\varepsilon_{x}^{'''} (L). \\ \end{aligned}$$
(131)

Now, let us consider the expression of \(\bar{\varepsilon }_{x}^{(3)} (x)\) given in (43). The nonstandard boundary conditions for \(n = 4\) as per (46) applied to \(\bar{\varepsilon }_{x}^{(3)} (x)\) leads to

$$\begin{aligned} & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} ( - )}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = 0, \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = 0, \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} (2)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = - \frac{{c_{4} }}{{c_{3} }}\varepsilon_{x} (0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( - )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} (3)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = 0} = \varepsilon_{x} (0) - c_{4} \varepsilon_{x} '(0), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} ( + )}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = 0, \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = 0, \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} }}^{{{\kern 1pt} (2)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = - \frac{{c_{4} }}{{c_{3} }}\varepsilon_{x} (L), \\ & {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{3} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{2} }}^{{{\kern 1pt} (1)}} {\mathscr{L}}_{{c_{1} }}^{{{\kern 1pt} (1)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = {\mathscr{L}}_{{c_{4} }}^{{{\kern 1pt} ( + )}} {\mathscr{L}}_{{c_{1} ,c_{2} ,c_{3} }}^{{{\kern 1pt} (3)}} \left. {\bar{\varepsilon }_{x}^{(3)} (x)} \right|_{x = L} = \varepsilon_{x} (L) + c_{4} \varepsilon_{x} '(L). \\ \end{aligned}$$
(132)

By extension, for a generic order n one should calculate the nonstandard boundary conditions applied to \(\bar{\varepsilon }_{x}^{(k)} (x)\,(k = 1, \ldots ,n - 1)\) by repeatedly applying the following relations

$$\left\{ {\begin{array}{*{20}c} {{\mathscr{L}}_{{c_{n,} c_{n - 1} , \ldots ,c_{j} }}^{(p - )} {\mathscr{L}}_{{c_{1,} c_{2} , \ldots ,c_{j - 1} }}^{(j - 1)} \left. {\bar{\varepsilon }_{x}^{(k)} (x)} \right|_{x = 0} } \\ {{\mathscr{L}}_{{c_{n,} c_{n - 1} , \ldots ,c_{j} }}^{(p + )} {\mathscr{L}}_{{c_{1,} c_{2} , \ldots ,c_{j - 1} }}^{(j - 1)} \left. {\bar{\varepsilon }_{x}^{(k)} (x)} \right|_{x = L} } \\ \end{array} } \right.\quad \quad \left( {\begin{array}{*{20}c} {{\text{for }}j = 1,2, \ldots ,n - 1;} \\ \begin{aligned} p = n - j + 1;\quad n \ge j; \\ k = 1, \ldots ,n - 1 \\ \end{aligned} \\ \end{array} } \right)$$
(133)

where the differential operators \({\mathscr{L}}_{{c_{n,} c_{n - 1} , \ldots ,c_{j} }}^{(p - )}\) and \({\mathscr{L}}_{{c_{n,} c_{n - 1} , \ldots ,c_{j} }}^{(p + )}\) are defined in (48). These higher order boundary conditions are useful for the determination of the eigenfunctions \(\phi (x)\) discussed in subsection 4.2. In this Appendix, we have explicitly reported the nonstandard boundary conditions up to order \(n = 4\). It is worth noting that all the presented expressions are simplified in the case \(c_{1} = c_{2} = \cdots = c_{n} = \ell\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Domenico, D., Ricciardi, G. & Askes, H. A generalized integro-differential theory of nonlocal elasticity of n-Helmholtz type—part II: boundary-value problems in the one-dimensional case. Meccanica 56, 651–687 (2021). https://doi.org/10.1007/s11012-020-01298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01298-9

Keywords

Navigation