Skip to main content
Log in

Deep learning-based initial guess for minimum energy path calculations

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An autoencoder that automatically generates an initial guess for the minimum energy pathway (MEP) calculations has been designed. Specifically, our autoencoder takes in the trajectories of molecular dynamics simulations as its input and facilitates the generation of feasible molecular coordinates. Two molecules (acetonitrile and alanine dipeptide) were tested using the nudged elastic band calculations and the results provided improvements over linear interpolation and image dependent pair potential methods in terms of the number of SCF iterations, demonstrating the utility of using an autoencoder type of an approach for MEP calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fukui, Acc. Chem. Res., 14, 363 (1981).

    Article  CAS  Google Scholar 

  2. H. B. Schlegel, J. Comput. Chem., 24, 1514 (2003).

    Article  CAS  Google Scholar 

  3. K. J. Laidler and M. C. King, J. Phys. Chem., 87, 2657 (1983).

    Article  CAS  Google Scholar 

  4. L. R. Pratt, J. Chem. Phys., 85, 5045 (1986).

    Article  CAS  Google Scholar 

  5. R. Elber and M. Karplus, Chem. Phys. Lett., 139, 375 (1987).

    Article  CAS  Google Scholar 

  6. E. Weinan, W. Ren and E. Vanden-Eijnden, Phys. Rev. B — Condens. Matter Mater. Phys., 66, 523011 (2002).

    Google Scholar 

  7. E. Weinan, W. Ren and E. Vanden-Eijnden, J. Chem. Phys., 126, 164103 (2007).

    Article  Google Scholar 

  8. H. Jonsson, G. Mills and K. W. Jacobsen, in Classical and quantum dynamics in condensed phase simulations: Proceedings of the international school of physics, B. J. Berne, G. Ciccotti and D. F. Coker, World Scientific, Singapore (1998).

  9. D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson and G. Henkelman, J. Chem. Phys., 136, 074103 (2012).

    Article  Google Scholar 

  10. G. Henkelman and H. Jónsson, J. Chem. Phys., 113, 9978 (2000).

    Article  CAS  Google Scholar 

  11. D. Sheppard, R. Trrell, and G. Henkelman, J. Chem. Phys., 128, 1 (2008).

    Article  Google Scholar 

  12. H. C. Herbol, J. Stevenson and P. Clancy, J. Chem. Theory Comput., 13, 3250 (2017).

    Article  CAS  Google Scholar 

  13. L. R. Raber, Chem. Eng. News, 75, 39 (1997).

    Google Scholar 

  14. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith and J. Andzelm, Comput. Mater. Sci., 28, 250 (2003).

    Article  CAS  Google Scholar 

  15. S. Smidstrup, A. Pedersen, K. Stokbro and H. Jonsson, J. Chem. Phys., 140, 214106 (2014).

    Article  Google Scholar 

  16. E. Martínez-Núñez, J. Comput. Chem., 36, 222 (2015).

    Article  Google Scholar 

  17. L. P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande and T. J. Martínez, Nat. Chem., 6, 1044 (2014).

    Article  CAS  Google Scholar 

  18. L. P. Wang, R. T. McGibbon, V. S. Pande and T. J. Martinez, J. Chem. Theory Comput., 12, 638 (2016).

    Article  CAS  Google Scholar 

  19. A. L. Dewyer, A. J. Argüelles and P. M. Zimmerman, Wiley Interdiscip. Rev. Comput. Mol. Sci., 8, 1 (2018).

    Article  Google Scholar 

  20. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, Adv. Neural Inf. Process. Syst., 2180 (2016).

  21. P. Upchurch, J. Gardner, G. Pleiss, R. Pless, N. Snavely, K. Bala and K. Weinberger, Proc. — 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017-Janua, 6090 (2017).

  22. D. Berthelot, I. Goodfellow, C. Raffel and A. Roy, 7th Int. Conf. Learn. Represent. ICLR 2019 (2019).

  23. M. A. Kramer, AIChE J., 37, 233 (1991).

    Article  CAS  Google Scholar 

  24. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. A. Manzagol, J. Mach. Learn. Res., 11, 3371 (2010).

    Google Scholar 

  25. D. P. Kingma and M. Welling, 2nd Int. Conf. Learn. Represent. ICLR 2014 — Conf. Track Proc., 1 (2014).

  26. S. Plimpton, J. Comput. Phys., 117, 1 (1997).

    Article  Google Scholar 

  27. S. Plimpton and A. P. Thomson, MRS Bulletin, 37, 513 (2012).

    Article  CAS  Google Scholar 

  28. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 114, 10024 (1992).

    Article  Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B, 48, 13115 (1993).

    Article  CAS  Google Scholar 

  30. G. Kresse, J. Furthmüller and J. Hafner, Phys. Rev. B, 50, 13181 (1994).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).

    Article  CAS  Google Scholar 

  32. P. E. Blöchl, Phys. Rev. B, 50, 17953 (1994).

    Article  Google Scholar 

  33. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  34. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Phys. Rev. Lett., 97, 1 (2006).

    Article  Google Scholar 

  35. G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 113, 9901 (2000).

    Article  CAS  Google Scholar 

  36. A. Larsen, J. J. Mortensen, J. Blomqvist, I. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer and C. Hargus, J. Phys. Condens. Matter, 29, 273002 (2017).

    Article  Google Scholar 

  37. W. Ren, E. Vanden-Eijnden, P. Maragakis and E. Weinan, J. Chem. Phys., 123, 134109 (2005).

    Article  Google Scholar 

  38. A. Allouche, J. Comput. Chem., 32, 174 (2012).

    Article  Google Scholar 

  39. P. G. Bolhuis, C. Dellago and D. Chandler, Proc. Natl. Acad. Sci. U.S.A., 97, 5877 (2000).

    Article  CAS  Google Scholar 

References

  1. V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines. In ICML 2010 — Proceedings, 27th International Conference on Machine Learning (2010).

  2. F. Chollet, Keras: The python deep learning library, ascl, ascl: 1806.022 (2018).

  3. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USE-NIX Symposium on Operating Systems Design and Implementation, OSDI 2016 (2016).

Download references

Acknowledgement

This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA1702-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihan Kim.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Lee, S. & Kim, J. Deep learning-based initial guess for minimum energy path calculations. Korean J. Chem. Eng. 38, 406–410 (2021). https://doi.org/10.1007/s11814-020-0704-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0704-1

Keywords

Navigation