Skip to main content
Log in

A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The bubble breakage rate in gas-liquid bubble columns increases for organic liquid and at high pressure. This study developed a breakage model that accounts for different liquid properties in gas-liquid pressurized bubble columns in the homogeneous regime. The Luo (1996), Lehr (2002), and Wang (2003) breakage models, which are widely used for the population balance equation (PBE) of bubble columns, were compared in terms of the total breakage rate, daughter size distribution, and computational time. The model with two empirical equations, modified from Luo’s breakage kernel, was proposed. One represented bubble deformation behavior in different liquid properties in terms of buoyancy, surface tension, and viscosity. The other considered the effect of operating pressure (or gas density) on the breakage rate. The modified model was compared with experimental data and a rigorous breakage model from the literature. The proposed breakage model shows good agreement with experimental data and computational efficiency. This breakage model is applicable for computational fluid dynamics with PBE in pressurized bubble columns with organic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c:

reakage time constant [=1/8]

Cf :

parameter of surface energy increment [-]

Cd :

parameter of surface energy per unit volume [-]

d:

mother bubble diameter [m]

d′:

small daughter bubble diameter [m]

d*:

dimensionless bubble diameter [-]

dc :

critical bubble neck diameter [m]

dneck :

diameter of the bubble neck [m]

eγ :

kinetic energy of eddy [J]

e γ, crit :

critical kinetic energy of eddy [J]

ēγ :

mean kinetic energy of eddy [J]

fv :

bubble breakup volume fraction [-]

kM :

correction factor of breakup rate considering liquid property [-]

kP :

correction factor of breakup rate considering system pressure [-]

Mo:

morton number [-]

n:

number density of bubbles [1/m3]

nγ :

number density of eddies [1/m4]

P:

operating pressure [bar]

Pb :

breakup probability density function [-]

Pe :

breakup probability density function for eddy [-]

tb :

bubble breakup time [s]

uγ :

turbulent velocity of eddy [m/s]

ūγ :

mean turbulent velocity at a distance of db [m/s]

u γ, crit :

critical turbulent velocity of eddy [m/s]

We:

webber number [-]

α g :

gasvolumefraction[-]

β :

daughter size distribution [-]

ε :

turbulence energy dissipation rate [m2/s3]

γ :

bombarding eddy size [m]

γ min :

minimum size of eddy [m]

μ l :

liquid viscosity [Pa·s

v l :

kinematic viscosity of fluid [m2/s]

Ω γ :

collision frequency density of eddy [1/m5/s]

Ω :

totalbreakagerate [1/m3/s]

Ω k :

breakage ratekernel[1/m3/s]

Ω f :

breakage frequency [1/s]

Ω*:

dimensionless breakage rate [-]

ρ g :

gasdensity[kg/m3]

ρ g,0 :

air density at normal condition [=1.2 kg/m3]

ρ l :

liquid density[kg/m3]

σ :

surface tension [N/m]

References

  1. V. Tran, D. D. Nguyen, S. I. Ngo, Y.-I. Lim, B. Kim, D. H. Lee, K.-S. Go and N.-S. Nho, AIChE J, 65, e16685 (2019).

    Article  Google Scholar 

  2. J. Lee, M. Yasin, S. Park, I. S. Chang, K.-S. Ha, E. Y. Lee, J. Lee and C. Kim, Korean J Chem. Eng., 32, 1060 (2015).

    Article  CAS  Google Scholar 

  3. A. H. Syed, M. Boulet, T. Melchiori and J.-M. Lavoie, Front. Chem., 5, 68 (2017).

    Article  Google Scholar 

  4. F. Lehr, M. Millies and D. Mewes, AIChE J, 48, 2426 (2002).

    Article  CAS  Google Scholar 

  5. T. Wang, J. Wang and Y. Jin, Chem. Eng. Sci., 58, 4629 (2003).

    Article  CAS  Google Scholar 

  6. H. Im, J. Park and J. W. Lee, Korean J. Chem. Eng, 36, 1680 (2019).

    Article  CAS  Google Scholar 

  7. S. Kumar and A. Khanna, Korean J. Chem. Eng., 31, 1964 (2014).

    Article  CAS  Google Scholar 

  8. P. M. Wilkinson, A. Van Schayk, J. P. M. Spronken and L. L. van Dierendonck, Chem. Eng. Sci., 48, 1213 (1993).

    Article  CAS  Google Scholar 

  9. C. Xing, T. Wang, K. Guo and J. Wang, AIChE J, 61, 1391 (2015).

    Article  CAS  Google Scholar 

  10. D. Rudkevitch and A. Macchi, Can. J. Chem. Eng., 86, 293 (2008).

    Article  CAS  Google Scholar 

  11. G. Besagni and F. Inzoli, Flow Meas. Instrum, 67, 55 (2019).

    Article  Google Scholar 

  12. C. J. Calderón and J. Ancheyta, Fuel, 216, 852 (2018).

    Article  Google Scholar 

  13. P. Yan, H. Jin, G. He, X. Guo, L. Ma, S. Yang and R. Zhang, Chem. Eng. Sci., 199, 137 (2019).

    Article  CAS  Google Scholar 

  14. K. Bae, G. S. Go, N. S. Noh, Y.-I. Lim, J. Bae and D. H. Lee, Chem. Eng. J, 386, 121339 (2020).

    Article  CAS  Google Scholar 

  15. C. B. Vik, J. Solsvik, M. Hillestad and H. A. Jakobsen, Comput. Chem. Eng, 110, 115 (2018).

    Article  CAS  Google Scholar 

  16. P. Chen, M. P. Dudukovic and J. Sanyal, AIChE J, 51, 696 (2005).

    Article  CAS  Google Scholar 

  17. K. Guo, T. Wang, Y. Liu and J. Wang, Chem. Eng. J, 329, 116 (2017).

    Article  CAS  Google Scholar 

  18. P. Yan, H. Jin, G. He, X. Guo, L. Ma, S. Yang and R. Zhang, Chem. Eng. Res. Des, 154, 47 (2020).

    Article  CAS  Google Scholar 

  19. H. Luo and H. F. Svendsen, AIChE J, 42, 1225 (1996).

    Article  CAS  Google Scholar 

  20. H. Zhang, G. Yang, A. Sayyar and T. Wang, Chem. Eng. J., 386, 121484 (2020).

    Article  CAS  Google Scholar 

  21. P. Rollbusch, M. Tuinier, M. Becker, M. Ludwig, M. Grünewald and R. Franke, Chem. Eng. Technol., 36, 1603 (2013).

    Article  CAS  Google Scholar 

  22. G. Yang, K. Guo and T. Wang, Chem. Eng. Sci., 170, 251 (2017).

    Article  Google Scholar 

  23. M. J. Prince and H. W. Blanch, AIChE J., 36, 1485 (1990).

    Article  CAS  Google Scholar 

  24. C. Tsouris and L. L. Tavlarides, AIChE J., 40, 395 (1994).

    Article  CAS  Google Scholar 

  25. J. Solsvik, S. Tangen and H. A. Jakobsen, Rev. Chem. Eng, 29, 241 (2013).

    CAS  Google Scholar 

  26. G. Grund, A. Schumpe and W. D. Deckwer, Chem. Eng. Sci., 47, 3509 (1992).

    Article  CAS  Google Scholar 

  27. C. Martïez-Bazán, J. L. Montañés and J. C. Lasheras, J. Fluid Mech, 401, 157 (1999).

    Article  Google Scholar 

  28. S. Maaβ and M. Kraume, Chem. Eng. Sci., 70, 146 (2012).

    Article  Google Scholar 

  29. R. Andersson and B. Andersson, AIChE J., 52, 2020 (2006).

    Article  CAS  Google Scholar 

  30. R. P. Hesketh, A. W. Etchells and T. W. F. Russell, Chem. Eng. Sci., 46, 1 (1991).

    Article  CAS  Google Scholar 

  31. J. Rodrïguez-Rodrïguez, C. Martïnez-Bazán and J. L. Montañés, Meas. Sci. Technol., 14, 1328 (2003).

    Article  Google Scholar 

  32. D. P. Laurie, Math. Comput., 66, 1133 (1997).

    Article  Google Scholar 

  33. W. Shi, J. Yang, G. Li, X. Yang, Y. Zong and X. Cai, Chem. Eng. Sci., 187, 391 (2018).

    Article  CAS  Google Scholar 

  34. J. Vejražka, M. Zednïková and P. Stanovský, AIChE J., 64, 740 (2018).

    Article  Google Scholar 

  35. K. Razzaghi and F. Shahraki, AIChE J., 62, 4508 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge with gratitude the financial support from the R&D Convergence Program of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Council of Science & Technology (NST) of the Republic of Korea (CRC-14-1-KRICT). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Ministry of Science and ICT (Grant number:2020R1F1A1066097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Il Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, B.V., Ngo, S.I., Lim, YI. et al. A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime. Korean J. Chem. Eng. 38, 264–275 (2021). https://doi.org/10.1007/s11814-020-0717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0717-9

Keywords

Navigation