Skip to main content
Log in

Effect of low levels of hydrotropes on micellization of phenothiazine drug

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Interactions within mixtures of the phenothiazine drug promethazine hydrochloride (PMH) and cationic hydrotropes ortho-toluidine hydrochloride (o-TDH) and para-toluidine hydrochloride (p-TDH) were investigated at different ratios and temperatures via conductometry to understand various physicochemical properties. Critical micelle concentration (cmc) was less than values of cmcid (cmc in ideal mixed system), indicating significant interaction among the studied constituents in solution mixtures. The cmc of pure PMH was also determined by measuring the surface tension for comparison. A variety of micellization thermodynamic parameters (Gibbs free energy [ΔG 0m ], change in standard enthalpy [ΔG 0m ], and change in entropy [ΔG 0m ]) were computed using conductometry. The micellar mole fraction (X Rb1 , X Rod1 , and X id1 ) of hydrotropes estimated by various theoretical models (Rubingh, Rodenas, and Motomura) was assessed, and the results showed a greater contribution of hydrotropes in mixed micelles along with their values increasing via an increase in mole fraction (α1) of hydrotropes (o-TDH/p-TDH). Negative β values suggest extremely favorable attractive interaction/synergism, as declines occurred in the whole quantity of amphiphile used for the desired purpose, leading to a drop of expenditure along with ecological concern. Obtained activity coefficients (f1 and f2) were always beneath unity, meaning nonideality was found between PMH and o-TDH/p-TDH. Like the conductivity method, the UV-visible and FT-IR techniques also demonstrate the interaction between the PMH and o-TDH/p-TDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Shaban and D. H. Kim, Korean J. Chem. Eng., 37, 1008 (2020).

    Article  CAS  Google Scholar 

  2. M. J. Rosen, Surfactants and interfacial phenomenon, 3rd Ed., Wiley, New Jersey (2004).

    Book  Google Scholar 

  3. N. Tahmasebi and M. Khalildashti, Korean J. Chem. Eng., 37, 448 (2020).

    Article  CAS  Google Scholar 

  4. B. Kim, Y. Choi, J. Choi, Y. Shin and S. Lee, Korean J. Chem. Eng., 37, 1 (2020).

    Article  CAS  Google Scholar 

  5. D. Kumar and M. A. Rub, J. Phys. Org. Chem., 32, e3918 (2019).

    Article  CAS  Google Scholar 

  6. D. Kumar and M. A. Rub, J. Mol. Liq., 274, 639 (2019).

    Article  CAS  Google Scholar 

  7. T. K. Vo and J. Kim, Korean J. Chem. Eng., 37, 571 (2020).

    Article  CAS  Google Scholar 

  8. G. H. Li and C. G. Cho, Korean J. Chem. Eng., 25, 1444 (2008).

    Article  CAS  Google Scholar 

  9. P. Taboada, D. Attwood, J. M. Ruso, M. Garcia, F. Sarmiento and V. Mosquera, J. Colloid Interface Sci., 248, 158 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. D. Kumar, S. Hidayathulla and M. A. Rub, J. Mol. Liq., 271, 254 (2018).

    Article  CAS  Google Scholar 

  11. A. Srivastava, H. Uchiyama, Y. Wada, Y. Hatanaka, Y. Shirakawa, K. Kadota and Y. Tozuka, J. Mol. Liq., 277, 349 (2019).

    Article  CAS  Google Scholar 

  12. M. A. Rub, N. Azum, F. Khan, A. G. Al-Sehemi and A. M. Asiri, Korean J. Chem. Eng., 32, 2142 (2015).

    Article  CAS  Google Scholar 

  13. M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Chem. Thermodyn., 121, 199 (2018).

    Article  CAS  Google Scholar 

  14. M. H. Hatzopoulos, J. Eastoe, P. J. Dowding, S. E. Rogers, R. Heenan and R. Dyer, Langmuir, 27, 12346 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. D. Balasubramanian, V. Srinivas, V. G. Gaikar and M. M. Sharma, J. Phys. Chem., 93, 3865 (1989).

    Article  CAS  Google Scholar 

  16. B. K. Roy and S. P. Moulik, Curr. Sci., 85, 1148 (2003).

    CAS  Google Scholar 

  17. V. Srinivas, G. A. Rodley, K. Ravikumar, W. T. Robinson and M. M. Turnbull, Langmuir, 13, 3235 (1997).

    Article  CAS  Google Scholar 

  18. K. M. Sachin, S. A. Karpe, M. Singh and A. Bhattara, R. Soc. Open Sci., 6, 181979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Schreier, S. V. P. Malheiros and E. de Paula, Biochim. Biophys. Acta, 1508, 210 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. M. Jones and J. Leroux, Eur. J. Pharm. Biopharm., 48, 101 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. V. P. Torchilin, J. Controlled Rel., 73, 137 (2001).

    Article  CAS  Google Scholar 

  22. B. G. Katzung, Basic and clinical pharmacology, 9th Ed., McGraw-Hill, New York (2004).

    Google Scholar 

  23. R. K. Mahajan, S. Mahajan, A. Bhadani and S. Singh, Phys. Chem. Chem. Phys., 14, 887 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. D. Kumar and M. A. Rub, J. Mol. Liq., 238, 389 (2017).

    Article  CAS  Google Scholar 

  25. Z. A. Khan, M. Kamil, O. Sulaiman, R. Hashim, M. N. M. Ibrahim, A. J. Khanam and Kabir-ud-Din, J. Dispersion Sci. Technol., 32, 1452 (2011).

    Article  CAS  Google Scholar 

  26. I. A. Khan, A. J. Khanam, M. S. Sheikh and Kabir-ud-Din, J. Phys. Chem. B, 115, 15251 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. G. Landázuri, J. Alvarez, F. Carvajal, E. R. Macías, A. González-Álvarez, E. P. Schulz, M. Frechero, J. L. Rodríguez, R. Minardi, P. C. Schulz and J. F. A. Soltero, J. Colloid Interface Sci., 370, 86 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. J. H. Clint, J. Chem. Soc., Faraday Trans., 1, 71, 1327 (1975).

    Article  CAS  Google Scholar 

  29. P. Jafari-Chashmi and A. Bagheri, J. Mol. Liq., 269, 816 (2018).

    Article  CAS  Google Scholar 

  30. J. Mata, D. Varade and P. Bahadur, Thermochim. Acta, 428, 147 (2005).

    Article  CAS  Google Scholar 

  31. J. L. Lopez-Fontan, V. Costa, J. M. Ruso, G. Prieto and F. Sarmiento, J. Chem. Eng. Data, 49, 1008 (2004).

    Article  CAS  Google Scholar 

  32. F. Khan, M. S. Sheikh, M. A. Rub, N. Azum and A. M. Asiri, J. Mol. Liq., 222, 1020 (2016).

    Article  CAS  Google Scholar 

  33. S. Mahbub, M. A. Rub, M. A. Hoque and M. A. Khan, J. Phys. Org. Chem., 31, e3872 (2018).

    Article  CAS  Google Scholar 

  34. S. Mahbub, M. A. Rub, M. A. Hoque and M. A. Khan, J. Phys. Org. Chem., 32, e3917 (2019).

    Article  CAS  Google Scholar 

  35. T. Asakawa, H. Kitano, A. Ohta and S. Miyagishi, J. Colloid Interface Sci., 242, 284 (2001).

    Article  CAS  Google Scholar 

  36. H. Iijima, T. Kato and A. Soderman, Langmuir, 16, 318 (2000).

    Article  CAS  Google Scholar 

  37. N. Gorski and J. Kalus, Langmuir, 17, 4211 (2001).

    Article  CAS  Google Scholar 

  38. S. A. Buckingham, C. J. Garve and G. G. Warr, J. Phys. Chem., 97, 10236 (1993).

    Article  CAS  Google Scholar 

  39. K. M. Kale, E. L. Cussler and D. F. Evans, J. Phys. Chem., 84, 593 (1980).

    Article  CAS  Google Scholar 

  40. Y. Wang, P. L. Dubin and H. Zhang, Langmuir, 17, 1670 (2001).

    Article  CAS  Google Scholar 

  41. F. Jalali, M. Shamsipur and N. Alizadeh, J. Chem. Thermodyn., 32, 755 (2000).

    Article  CAS  Google Scholar 

  42. M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Phys. Org. Chem., 30, e3676 (2017).

    Article  CAS  Google Scholar 

  43. M. A. Rub, F. Khan, D. Kumar and A. M. Asiri, Tenside Surf. Deterg., 52, 236 (2015).

    Article  CAS  Google Scholar 

  44. Z. A. Khan, J. Mol. Liq., 281, 333 (2019).

    Article  CAS  Google Scholar 

  45. A. J. Khanam, M. S. Sheikh, I. A. Khan and Kabir-ud-Din, J. Ind. Eng. Chem., 20, 3453 (2014).

    Article  CAS  Google Scholar 

  46. A. Malliaris, J. Phys. Chem., 91, 6511 (1987).

    Article  CAS  Google Scholar 

  47. S. Chauhan and L. Pathania, J. Mol. Liq., 272, 953 (2018).

    Article  CAS  Google Scholar 

  48. F. Khan, M. A. Rub, N. Azum and A. M. Asiri, J. Phys. Org. Chem., 31, e3812 (2018).

    Article  CAS  Google Scholar 

  49. V. B. Wagle, P. S. Kothari and V. G. Gaikar, J. Mol. Liq., 133, 68 (2007).

    Article  CAS  Google Scholar 

  50. D. N. Rubingh, Mixed Micelle Solution, in: K. L. Mittal Ed., Solution Chemistry of Surfactants, vol. 1, Plenum, New York (1979).

    Google Scholar 

  51. S. Das, S. Ghosh and B. Das, J. Chem. Eng. Data, 63, 3784 (2018).

    Article  CAS  Google Scholar 

  52. V. Rodenas, M. Valiente and M. S. Villafruela, J. Phys. Chem. B, 103, 4549 (1999).

    Article  CAS  Google Scholar 

  53. K. Motomura, M. Yamanaka and M. Aratono, Colloid Polym. Sci., 262, 948 (1984).

    Article  CAS  Google Scholar 

  54. M. A. Rub, N. Azum, S. B. Khan, H. M. Marwani and A. M. Asiri, J. Mol. Liq., 212, 532 (2015).

    Article  CAS  Google Scholar 

  55. F. Khan, M. A. Rub, N. Azum, D. Kumar and A. M. Asiri, J. Solution Chem., 44, 1937 (2015).

    Article  CAS  Google Scholar 

  56. O. Singh, P. Singla, R. Kaur and R. K. Mahajan, Colloids Surf. A, 523, 43 (2017).

    Article  CAS  Google Scholar 

  57. M. A. Rub, N. Azum and A. M. Asiri, J. Chem. Eng. Data, 62, 3216 (2017).

    Article  CAS  Google Scholar 

  58. D. Kumar, N. Azum, M. A. Rub and A. M. Asiri, J. Mol. Liq., 262, 86 (2018).

    Article  CAS  Google Scholar 

  59. D. Kumar, M. A. Rub, N. Azum and A. M. Asiri, J. Phys. Org. Chem., 31, e3730 (2018).

    Article  CAS  Google Scholar 

  60. N. Azum, M. A. Rub, A. M. Asiri and H. A. Kashmery, J. Mol. Liq., 260, 159 (2018).

    Article  CAS  Google Scholar 

  61. M. A. Rub, F. Khan, M. S. Sheikh, N. Azum and A. M. Asiri, J. Chem. Thermodyn., 96, 196 (2016).

    Article  CAS  Google Scholar 

  62. J.-J. Aaron, M. Maafi, C. Kersebet, C. Párkányi, M. S. Antonious and N. Motohashi, J. Photochem. Photobiol. A, 101, 127 (1996).

    Article  CAS  Google Scholar 

  63. S. Mahajan and R. K. Mahajan, J. Colloid Interface Sci., 387, 194 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. H. Kumar, N. Sharma and A. Katal, J. Mol. Liq., 258, 285 (2018).

    Article  CAS  Google Scholar 

  65. V. G. Gaikar, K. V. Padalkar and V. K. Aswal, J. Mol. Liq., 138, 155 (2008).

    Article  CAS  Google Scholar 

  66. A. Nabi, S. Tasneem, C. G. Jesudason, V. S. Lee and S. B. M. Zain, J. Mol. Liq., 256, 100 (2018).

    Article  CAS  Google Scholar 

  67. K. V. Padalkar, V. G. Gaikar and V. K. Aswal, J. Mol. Liq., 144, 40 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. (KEP-73-130-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support. This article is dedicated to Prof. Kabir-ud-Din on his 75th birth year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaifi, S.Y.M., Kumar, D., Rub, M.A. et al. Effect of low levels of hydrotropes on micellization of phenothiazine drug. Korean J. Chem. Eng. 38, 386–399 (2021). https://doi.org/10.1007/s11814-020-0710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0710-3

Keywords

Navigation