Skip to main content

Advertisement

Log in

Effects of inert gas addition, oxygen concentration, and pressure on explosion characteristics of propylene

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Propylene is used for manufacturing commonly used raw materials and synthetic materials for petrochemical processes. However, it is a volatile and flammable material that poses fire and explosion risks. Nitrogen is inexpensive and can lower the propylene explosion limit because of the dilution effect when used as an inert gas. This study measures the explosion limit, minimum oxygen concentration (MOC), explosion pressure, explosion pressure rise rate, and deflagration index (Kg) values for propylene and nitrogen at 25 °C. Results showed that the lower explosion limit of the explosion range did not significantly change with an increase in pressure from 0.10 MPa to 0.25 MPa; however, the upper explosion limit increased significantly. Furthermore, the MOC decreased as pressure increased at 25 °C, while both the maximum explosion pressure and maximum explosion pressure rise rate increased, thereby increasing the explosion risk. The risk of propylene was predicted by the Kg values determined using the maximum explosion pressure rise rate and volume based on the experimental data. Therefore, through this study, we provide basic data on safety references for preventing fire and explosion accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Corma, F. V. Melo, L. Sauvanaud and F. Ortega, Catal. Today, 107–108, 699 (2005).

    Article  Google Scholar 

  2. M. G. Sleenko, J. M. Boojdan, V. S. Beskov and I. D. Yemelyanov, J. Catal., 1(2), 197 (1962).

    Article  Google Scholar 

  3. T. S. Lee, J. Y. Sung and D. J. Park, Fire Saf. J., 49, 62 (2012).

    Article  CAS  Google Scholar 

  4. B. B. Bazalan, Effect of pressure on the fammability limits of acetylene, Bachelors thesis report, Universiti Malaysia Pahang, 11 (2012).

  5. F. Van den Schoor, Influence of pressure and temperature on fammability limits of combustible gases in air, Katholieke Universiteit Leuven, 64–72 (2007).

  6. G. Cui, S. Wang, Z. Bi and Z. Li, Fuel, 233, 159 (2018).

    Article  CAS  Google Scholar 

  7. M. Mitu, M. Prodan, V. Giurcan, D. Razus and D. Oancea, Process Saf. Environ. Prot., 102, 513 (2016).

    Article  CAS  Google Scholar 

  8. J. Casillas, O. Cordón, F. H. Triguero and L. Magdalena, Interpretability issues in fuzzy modeling, Springer, New York (2013).

    Google Scholar 

  9. S. Kundu, J. Zanganeh and B. Moghtaderi, J. Loss Prev. Process. Ind., 40, 507 (2016).

    Article  CAS  Google Scholar 

  10. X. Shen, B. Zhang, X. Zhang and G. Xiu, J. Loss Prev. Process. Ind., 45, 102 (2017).

    Article  CAS  Google Scholar 

  11. Y. Li, M. Bi, B. Li, Y. Zhou and W. Gao, Fuel, 233, 269 (2018).

    Article  CAS  Google Scholar 

  12. V. Giurcan, M. Mitu, C. Movileanu, D. Razus and D. Oancea, Fire Saf. J., 111, 102939 (2020).

    Article  CAS  Google Scholar 

  13. M. G. Zabetakis, Flammability characteristics of combustible gases and vapors, Bureau of Mines, Washington DC (1965).

    Google Scholar 

  14. M. Mitu and E. Brandes, Fuel, 203, 460 (2017).

    Article  CAS  Google Scholar 

  15. Y. Koshiba, T. Takigawa, Y. Matsuoka and H. Ohtani, J. Hazard. Mater., 183, 746 (2010).

    Article  CAS  Google Scholar 

  16. Z. Luo, L. Liu, F. Cheng, T. Wang, B. Su, J. Zhang, S. Gao and C. Wang, J. Loss Prev. Process. Ind., 58, 8 (2019).

    Article  CAS  Google Scholar 

  17. T. S. Lee, J. Y. Sung and D. J. Park, Fire Saf. J., 49, 62 (2012).

    Article  CAS  Google Scholar 

  18. X. Li, Q. Yu, N. Zhou, X. Liu, W. Huang and H. Zhao, Adv. Mech. Eng., 11(5), 1 (2019).

    Google Scholar 

  19. X. Yu, X. Yan, W. Ji, C. Luo, F. Yao and J. Yu, J. Loss Prev. Process. Ind., 59, 100 (2019).

    Article  CAS  Google Scholar 

  20. American Society for Testing and Materials, ASTM E918-83: Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure, West Conshohocken, PA (2011).

  21. Y. A. Cengel and J. M. Cimbala, Fluid mechanics: fundamentals and applications 4th Ed. in SI units, McGraw-Hill, New York (2019).

    Google Scholar 

  22. Y. A. Cengel and M. A. Boles, Thermodynamics an engineering approach 8th Ed., McGraw-Hill, New York (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YJ., Choi, JW. Effects of inert gas addition, oxygen concentration, and pressure on explosion characteristics of propylene. Korean J. Chem. Eng. 38, 337–341 (2021). https://doi.org/10.1007/s11814-020-0699-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0699-7

Keywords

Navigation