Skip to main content
Log in

A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

For the long-term dynamic simulation of a fluidized bed reactor (FBR), a two-way coupled computational fluid dynamics (CFD)-direct quadrature method of moments (DQMOM) approach is proposed. In this approach, CFD is first used only for hydrodynamic information without simulating any other chemical reactions or physical phenomena. Subsequently, the derived information is applied to the DQMOM calculation in MATLAB. From the calculation, a particle size distribution is obtained and subsequently adopted in a new CFD model to reflect the flow change caused by a change in the particle size distribution. Through several iterative calculations, long-term dynamic simulations are performed. To evaluate the efficacy of the proposed approach, the results from the suggested approach are compared for 60 s with those of the CFD-quadrature method of moments (QMOM) approach, which calculates hydrodynamics and physical phenomena simultaneously in CFD. The proposed approach successfully simulated the FBR for 6 h. The results confirmed that the proposed method can simulate complex flow patterns, which cannot be obtained in conventional CFD models. Another advantage of the approach is that it can be applied to various industrial multiphase reactors without any tuning parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ds :

particle size [m]

d32 :

sauter mean diameter [mm]

g:

gravitational acceleration [m/s2]

Kgs :

gas/solid drag coefficient

L:

particle size as internal coordinate [m]

m:

moments

n:

bubble number density

P:

pressure [N/m2]

sp :

phase p among particles

t:

time [s]

u :

velocity vector [m/s]

w:

quadrature weight

α :

phase volume fraction

δ :

dirac delta function

μ :

molecular dynamic viscosity [Pa s]

λ s :

solid bulk viscosity [Pa s]

ρ :

density [kg/m3]

θ s :

granular temperature [m2/s2]

\(\mathrm{k}_{\theta_{s}}\) :

granular energy

\(\gamma_{\theta_{s}}\) :

collisional dissipation of energy

ϕ gs :

energy exchange between gas and solid

ess :

restitution coefficient

g0,ss :

radial distribution function

τ :

stress-strain tensor [Pa]

CFD:

computational fluid dynamics

CFD-hydrodynamics model:

simulate only hydrodynamics without reactions or the PBM

CFD-QMOM:

simulate flows and PBM together in FLUENT’s own implementation code

FBR:

fluidized bed reactor

PBM:

population balance model

QMOM:

quadrature method of moments

DQMOM:

direct quadrature method of moments

NDF:

number density function

g:

gas

s:

solid

i:

specified number of moments

References

  1. C. Kiparissides, J. Process Control, 16, 205 (2006).

    Article  CAS  Google Scholar 

  2. W. C. Yan, Z. H. Luo, Y. H. Lu and X. D. Chen, AIChE J., 58, 1717 (2012).

    Article  CAS  Google Scholar 

  3. Y. Che, Z. Tian, Z. Liu, R. Zhang, Y. Gao, E. Zou, S. Wang and B. Liu, Powder Technol., 286, 107 (2015).

    Article  CAS  Google Scholar 

  4. A. D. Randolph and M. A. Larson, Theory of particulate processes: Analysis and techniques of continuous crystallization, Academic Press Inc., New York (1971).

    Google Scholar 

  5. J. R. Grace and F. Taghipour, Powder Technol., 139, 99 (2004).

    Article  CAS  Google Scholar 

  6. J.-P. Torré, D. F. Fletcher, T. Lasuye and C. Xuereb, Chem. Eng. Sci., 62, 6246 (2007).

    Article  CAS  Google Scholar 

  7. J. Jung and I. K. Gamwo, Powder Technol., 183, 401 (2008).

    Article  CAS  Google Scholar 

  8. J. A. Mendoza and S. Hwang, Korean J. Chem. Eng., 35, 11 (2018).

    Article  CAS  Google Scholar 

  9. F. Kerdouss, A. Bannari and P. Proulx, Chem. Eng. Sci., 61, 3313 (2006).

    Article  CAS  Google Scholar 

  10. S. Park, J. Na, M. Kim, J. An, C. Lee and C. Han, Korean Chem. Eng. Res., 54, 612 (2016).

    Article  CAS  Google Scholar 

  11. N. Jurtz, M. Kraume and G. D. Wehinger, Rev. Chem. Eng., 35, 139 (2019).

    Article  Google Scholar 

  12. M. Kim, J. Na, S. Park, J.-H. Park and C. Han, Chem. Eng. Sci., 177, 301 (2018).

    Article  CAS  Google Scholar 

  13. S. Zimmermann and F. Taghipour, Ind. Eng. Chem. Res., 44, 9818 (2005).

    Article  CAS  Google Scholar 

  14. S. Park, J. Na, M. Kim and J. M. Lee, Comput. Chem. Eng., 119, 25 (2018).

    Article  CAS  Google Scholar 

  15. R. Fan, D. L. Marchisio and R. O. Fox, Powder Technol., 139, 7 (2004).

    Article  CAS  Google Scholar 

  16. S.-S. Liu and W.-D. Xiao, Chem. Eng. Sci., 111, 112 (2014).

    Article  CAS  Google Scholar 

  17. Y. Yao, Y.-J. He, Z.-H. Luo and L. Shi, Adv. Powder Technol., 25, 1474 (2014).

    Article  CAS  Google Scholar 

  18. Y. Yao, J.-W. Su and Z.-H. Luo, Powder Technol., 272, 142 (2015).

    Article  CAS  Google Scholar 

  19. V. Alopaeus, M. Laakkonen and J. Aittamaa, Chem. Eng. Sci., 61, 6732 (2006).

    Article  CAS  Google Scholar 

  20. D. L. Marchisio, A. A. Barresi and M. Garbero, AIChE J., 48, 2039 (2002).

    Article  CAS  Google Scholar 

  21. J. Akroyd, A. J. Smith, L. R. McGlashan and M. Kraft, Chem. Eng. Sci., 65, 1915 (2010).

    Article  CAS  Google Scholar 

  22. Z. Li, J. Kessel, G. Grünewald and M. Kind, Drying Technol., 31, 1888 (2013).

    Article  CAS  Google Scholar 

  23. A. Delafosse, M.-L. Collignon, S. Calvo, F. Delvigne, M. Crine, P. Thonart and D. Toye, Chem. Eng. Sci., 106, 76 (2014).

    Article  CAS  Google Scholar 

  24. M. Gresch, R. Brügger, A. Meyer and W. Gujer, Environ. Sci. Technol., 43, 2381 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. A. Nørregaard, C. Bach, U. Krühne, U. Borgbjerg and K. V. Gernaey, Chem. Eng. J., 356, 161 (2019).

    Article  CAS  Google Scholar 

  26. Y. Shah, B. G. Kelkar, S. Godbole and W. D. Deckwer, AIChE J., 28, 353 (1982).

    Article  CAS  Google Scholar 

  27. S. Yang, S. Kiang, P. Farzan and M. Ierapetritou, Processes, 7, 9 (2019).

    Article  CAS  Google Scholar 

  28. M. Kim, S. Park, D. Lee, S. Lim, M. Park and J. M. Lee, Chem. Eng. J., 395, 125034 (2020).

    Article  CAS  Google Scholar 

  29. F. Bezzo, S. Macchietto and C. Pantelides, AIChE J., 49, 2133 (2003).

    Article  CAS  Google Scholar 

  30. W. Zhao, A. Buffo, V. Alopaeus, B. Han and M. Louhi-Kultanen, AIChE J., 63, 378 (2017).

    Article  CAS  Google Scholar 

  31. H. Hatzantonis, A. Goulas and C. Kiparissides, Chem. Eng. Sci., 53, 3251 (1998).

    Article  CAS  Google Scholar 

  32. D. L. Marchisio and R. O. Fox, J. Aerosol Sci., 36, 43 (2005).

    Article  CAS  Google Scholar 

  33. D. L. Marchisio, R. D. Vigil and R. O. Fox, J. Colloid Interface Sci., 258, 322 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. D. L. Marchisio, R. D. Vigil and R. O. Fox, Chem. Eng. Sci., 58, 3337 (2003).

    Article  CAS  Google Scholar 

  35. R. G. Gordon, J. Math. Phys., 9, 655 (1968).

    Article  Google Scholar 

  36. L. Metzger and M. Kind, Chem. Eng. Sci., 169, 284 (2017).

    Article  CAS  Google Scholar 

  37. A. Shamiri, M. A. Hussain, F. S. Mjalli and N. Mostoufi, Chem. Eng. J., 161, 240 (2010).

    Article  CAS  Google Scholar 

  38. R. Fan, Ph.D. thesis, Iowa State University, Ames, IA (2006).

  39. T. J. Niemi, M.S. thesis, Aalto University (2012).

  40. C. Chen, Q. Dai and H. Qi, Chem. Eng. Sci., 141, 8 (2016).

    Article  CAS  Google Scholar 

  41. H. Qi, F. Li, B. Xi and C. You, Chem. Eng. Sci., 62, 1670 (2007).

    Article  CAS  Google Scholar 

  42. Q. Zhou and J. Wang, Chem. Eng. Sci., 122, 637 (2015).

    Article  CAS  Google Scholar 

  43. F. Vejahati, N. Mahinpey, N. Ellis and M. B. Nikoo, Can. J. Chem. Eng., 87, 19 (2009).

    Article  CAS  Google Scholar 

  44. E. Esmaili and N. Mahinpey, Adv. Eng. Software, 42, 375 (2011).

    Article  Google Scholar 

  45. E. Ghadirian and H. Arastoopour, Powder Technol., 288, 35 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) of the Korean government (No. 2020R1A2C100550311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Min Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, K., Bak, Y. et al. A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor. Korean J. Chem. Eng. 38, 342–353 (2021). https://doi.org/10.1007/s11814-020-0701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0701-4

Keywords

Navigation