Skip to main content
Log in

Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: effect of Ni loading

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of tetrametallic hydrotalcite with different Ni loading, were synthesized by coprecipitation method. Then, these hydrotalcites were calcined in their respective metal oxides and were used as catalysts in the etherification reaction for the synthesis of polyglycerols. The effect of Ni loading on the structural and textural features was investigated by various techniques such as X-ray diffraction (XRD), thermogravimetric analysis TG–DSC–MS, temperature-programmed reduction (H2-TPR), temperature-programmed desorption (NH3-TPD) and 1-butene isomerization as a model reaction to probe acid–base character of catalysts. Mixed oxides derived from hydrotalcites are found to be active and suitable, via solvent free, in the glycerol etherification reaction. A gradual enhance of glycerol conversion is revealed when increasing the Ni/Mg molar ratio and the most active catalyst found is HTc-Ni75% with full selectivity to diglycerol.

Highlights

  • The presence of Ni2+ species modifies the amount of acid and basic sites.

  • The partial incorporation of Ni2+ enhances the catalytic activity.

  • The glycerol etherification leads to diglycerol and triglycerols as products.

  • Temperatures higher than 220 °C lead to uncontrolled polymerizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wilms D, Stiriba SE, Frey H (2010) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43:129–141

    CAS  Google Scholar 

  2. Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218

    Google Scholar 

  3. Salehpour S, Dube MA (2011) Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol Chem Phys 212:1284–1293

    CAS  Google Scholar 

  4. Yadav JD, Kulkarni PR, Vaidya KA, Shelke GT (2011) Niosomes: a review. J Pharm Res 4:632–636

    CAS  Google Scholar 

  5. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Google Scholar 

  6. Richter M, Krisnandi YK, Eckelt R, Martin A (2008) Homogeneously catalyzed batch reactor glycerol etherification by CsHCO3. Catal Commun 9:2112–2116

    CAS  Google Scholar 

  7. Krisnandi YK, Eckelt R, Schneider M, Martin A, Richter M (2008) Glycerol upgrading over zeolites by batch-reactor liquid-phase oligomerization: heterogeneous versus homogeneous reaction. ChemSusChem 1:835–844

    CAS  Google Scholar 

  8. Medeiros MA, Araujo MH, Augusti R, de Oliveira LCA, Lago RMJ (2009) Acid-catalyzed oligomerization of glycerol investigated by electrospray ionization mass spectrometry. Braz Chem Soc 20:1667–1673

    CAS  Google Scholar 

  9. Harvey SB, Shen S (1996) One phase production of polyglycerol esters. Patent US 5585506A.

  10. Lemke D, Nivens S (2007) Process for preparing polyglycerol and mixed ethers. Patent WO 2007/092407.

  11. Ruppert AM, Meeldijk JD, Kuipers BWM, Erné BH, Weckhuysen BM (2008) Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chem Eur J 14:2016–2024

    CAS  Google Scholar 

  12. Ayoub M, Abdullah AZ (2013) LiOH-modified montmorillonite K-10 as catalyst for selective glycerol etherification to diglycerol. Catal Commun 34:22–25

    CAS  Google Scholar 

  13. Calatayud M, Ruppert AM, Weckhuysen BM (2009) Theoretical study on the role of surface basicity and Lewis acidity on the etherification of glycerol over alkaline earth metal oxides. Chem Eur J 15:10864–10870

    CAS  Google Scholar 

  14. Pérez-Barrado E, Pujol MC, Aguiló M, Llorca J, Cesteros Y, Díaz F, Pallarès J, Marsal LF, Salagre P (2015) Influence of acid–base properties of calcined MgAl and CaAl layered double hydroxides on the catalytic glycerol etherification to short-chain polyglycerols. Chem Eng J 264:547–556

    Google Scholar 

  15. Sivaiah MV, Robles-Manuel S, Valange S, Barrault J (2012) Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catal Today 198:305–313

    CAS  Google Scholar 

  16. González MD, Salagre P, Mokaya R, Cesteros Y (2014) Tuning the acidic and textural properties of ordered mesoporous silicas for their application as catalysts in the etherification of glycerol with isobutene. Catal Today 227:171–178

    Google Scholar 

  17. Cottin K, Clacens JM, Pouilloux Y, Barrault J (1998) Preparation of diglycerol and triglycerol by the direct polymerization of glycerol in the presence of the new solid catalysts. Ol Corps Gras Lipide 5:407–412

    CAS  Google Scholar 

  18. Richter M, Eckett R, Krisnandi YK, Martin A (2008) Verfahren zur selektiven herstellung von linearem diglycerin. Chem Ing Tech 80:1573–1577

    CAS  Google Scholar 

  19. Ayoub M, Abdullah AZ (2015) Diglycerol synthesis via solvent-free selective glycerol etherification process over lithium-modified clay catalyst. Chem Eng J 225:784–789

    Google Scholar 

  20. Tichit D, Gérardin C, Durand R, Coq B (2006) Layered double hydroxides: precursors for multifunctional catalysts. Top Catal 39:89–96

    CAS  Google Scholar 

  21. Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou CH (2011) Catalytic applications of layered double hydroxides and derivatives. Appl Clay Sci 53:139–150

    CAS  Google Scholar 

  22. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040–7066

    CAS  Google Scholar 

  23. García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles Torres P (2011) Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catal Today 167:84–90

    Google Scholar 

  24. Guerrero-Urbaneja P, García-Sancho C, Moreno-Tost R, Merida-Robles J, Santamaria-Gonzalez J, Jimenez-Lopez A, Maireles-Torres P (2014) Glycerol valorization by etherification to polyglycerols by using metal oxides derived from MgFe hydrotalcites. Appl Catal A 470:199–207

    CAS  Google Scholar 

  25. Kuhl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Cu-based catalyst resulting from a Cu, Zn, Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in-situ XAS study. Chem Eur J 20:3782–3792

    Google Scholar 

  26. Gao P, Xie R, Wang H, Zhong L, Xia L, Zhang Z, Wei W, Sun Y (2015) Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide. J CO2 Util 11:41–48

    CAS  Google Scholar 

  27. Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) Oxidative steam reforming of methanol over CuZnAl(Zr)-Oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation. J Catal 194:373–384

    CAS  Google Scholar 

  28. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    CAS  Google Scholar 

  29. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  30. Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloid Surf. A 437:3–32

    CAS  Google Scholar 

  31. Aramendia MA, Avilés Y, Benitez JA, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano FJ (1999) Comparative study of Mg/Al and Mg/Ga layered double hydroxides. Micropor Mesopor Mater 29:319–328

    CAS  Google Scholar 

  32. Noda Pérez C, Pérez CA, Henriques CA, Monteiro JLF (2004) Hydrotalcites as precursors for Mg,Al-mixed oxides used as catalysts on the aldol condensation of citral with acetone. Appl Catal A 272:229–240

    Google Scholar 

  33. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  34. Dębek R, Motak M, Duraczyska D, Launay F, Gálvez ME, Grzybek T, da Costa P (2016) Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catal Sci Technol 6:6705–6715

    Google Scholar 

  35. Sundaramurthy V, Dalai AK, Djaye JA (2008) The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst. Appl Catal A 335:204–210

    CAS  Google Scholar 

  36. Shen J, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137:295–301

    CAS  Google Scholar 

  37. Lino AVP, Assaf EM, Assaf JM (2016) Hydrotalcites derived catalysts for syngas production from biogas reforming: effect of nickel and cerium load. Catal Today 289:78–88

    Google Scholar 

  38. García-Sancho C, Moreno-Tost R, Mérida-Robles J, Santamaría-González J, Jiménez-Lopez A, Maireles-Torres P (2012) Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products. Appl Catal A 433:179–187

    Google Scholar 

  39. Patrono P, La Ginestra A, Ramis G, Busca G (1994) Conversion of 1-butene over WO3-TiO2 catalysts. Appl Catal A 107:249–266

    CAS  Google Scholar 

  40. Cecilia JA, García-Sancho C, Franco F (2013) Montmorillonite based porous clay heterostructures: influence of Zr in the structure and acidic properties. Micropor Mesopor Mater 176:95–102

    CAS  Google Scholar 

  41. Solsona B, Concepción P, López Nieto JM, Dejoz A, Cecilia JA, Agouram S, Soriano MD, Torres V, Jiménez-Jiménez J, Rodríguez Castellón E (2016) Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catal Sci Technol 6:3419–3429

    CAS  Google Scholar 

  42. Barros FJS, Moreno-Tost R, Cecilia JA, Ledesma-Muñoz AL, de Oliveira LCC, Luna FMT, Vieira RS (2017) Glycerol oligomers production by etherification using calcined eggshell as catalyst. Mol Catal 433:282–290

    CAS  Google Scholar 

  43. Correia LM, Campelo NS, Novaes DS, Cavalcante CL, Cecilia JA, Rodríguez-Castellón E, Vieira RS (2015) Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem Eng J 269:35–43

    CAS  Google Scholar 

  44. Liu P, Derchi M, Hensen EJM (2014) Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl Catal B144:135–143

    Google Scholar 

  45. Clacens JM, Pouilloux Y, Barrault J, Linares C, Goldwasser M (1998) Mesoporous basic catalysts: comparison with alkaline exchange zeolites (basicity and porosity). Application to the selective etherification of glycerol to polyglycerols. Stud Surf Sci Catal 118:895–902

    CAS  Google Scholar 

  46. Martin A, Richter M (2011) Oligomerization of glycerol a critical review. Eur J Lipid Sci Technol 113:100–17

    CAS  Google Scholar 

  47. Sutter M, da Silva E, Duguet N, Raoul Y, Métay E, Lemaire M (2015) Glycerol ether synthesis: a bench test for green chemistry concepts and technologies. Chem Rev 115:8609–8651

    CAS  Google Scholar 

  48. Gholami Z, Abdullah AZ, Lee KT (2014) Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium-lanthanum oxide supported on MCM-41: a heterogeneous basic catalyst. Appl Catal A 479:76–86

    CAS  Google Scholar 

  49. Ayoub M, Khayoon MS, Abdullah AZ (2012) Synthesis of oxygenated fuel additives via the solventless etherification of glycerol. Bioresource Technol 112:308–312

    CAS  Google Scholar 

  50. Clacens JM, Pouilloux Y, Barrault J (2002) Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl Catal A 227:181–190

    CAS  Google Scholar 

  51. Barros FJS, Cecilia JA, Moreno-Tost R, de Oliveira MF, Rodríguez-Castellón E, Luna FMT, Vieira RS (2018) Glycerol oligomerization using low cost dolomite catalyst. Waste Biomass Valor 11:1499–1512

    Google Scholar 

Download references

Acknowledgements

This work was supported by the projects RTI2018-099668-B-C22 (Spanish Ministry of Science, Innovation and Universities, Spain and FEDER Funds) and UMA18-FEDERJA, P12-RNM-1565 projects (Junta de Andalucía, Spain). A special acknowledge to the Tunisian Ministry of Higher Education, Scientific Research, Information and Communication Technologies for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Cecilia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloui, M., Cecilia, J.A., Moreno-Tost, R. et al. Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: effect of Ni loading. J Sol-Gel Sci Technol 97, 351–364 (2021). https://doi.org/10.1007/s10971-020-05344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05344-6

Keywords

Navigation