Skip to main content
Log in

Active Thermography for Non-invasive Inspection of an Artwork on Poplar Panel: Novel Approach Using Principal Component Thermography and Absolute Thermal Contrast

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The conservation of the works of art represent a topic of global interest. The development of effective tools based on advanced technology for analysing and monitoring their health-state is essential to assuring their preservation. In fact, detecting and preventing the formation of defective areas or assessing for an accurate pre-restoration analysis are the main objectives of non-destructive inspection. Active thermography is a well-known non-invasive imaging technique and reliable tool for providing a fast and low-cost analysis of a work of art. In this study we combine the potential of Principal Component Thermography and of Absolute Thermal Contrast to analyse thermal images acquired in-situ on a poplar panel painting representing an original artwork dating in the end of XVI century. We first optimized the thermal stimulation parameters in the laboratory using special phantom samples. These samples were specially made by reproducing in high fidelity the structural properties and materials of the artwork in order to perform effectively the preliminary tests. Then we moved the equipment in-situ by performing the non-destructive inspection directly on the real artwork. We have developed a specific experimental protocol that combines active thermography with two specific and appropriate image processing modalities that allowed us the effective detection of various types of defects in the painting layer. We report a complete analysis and deep discussion concerning the detection and characterization of the defects. Results show that our diagnostic protocol is a powerful tool in assessing the pre-restoration health-state and suitable for in situ analysis of wood artworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Doleżyńska-Sewerniak, E., Jendrzejewski, R., Klisińska-Kopacz, A., Sawczak, M.: Non-invasive spectroscopic methods for the identification of drawing materials used in XVIII century. J. Cult. Herit. 41, 34–42 (2020). https://doi.org/10.1016/j.culher.2019.07.008

    Article  Google Scholar 

  2. Borg, B., Dunn, M., Ang, A., Villis, C.: The application of state-of-the-art technologies to support artwork conservation: literature review. J. Cult. Herit. (2020). https://doi.org/10.1016/j.culher.2020.02.010

    Article  Google Scholar 

  3. Zhang, H., Sfarra, S., Saluja, K., Peeters, J., Fleuret, J., Duan, Y., Fernandes, H., Avdelidis, N., Ibarra-Castanedo, C., Maldague, X.: Non-destructive investigation of paintings on canvas by continuous wave Terahertz imaging and flash thermography. J. Nondestruct. Eval. (2017). https://doi.org/10.1007/s10921-017-0414-8

    Article  Google Scholar 

  4. Garofano, I., Perez-Rodriguez, J.L., Robador, M.D., Duran, A.: An innovative combination of non-invasive UV–Visible-FORS, XRD and XRF techniques to study Roman wall paintings from Seville, Spain. J. Cult. Herit. 22, 1028–1039 (2016). https://doi.org/10.1016/j.culher.2016.07.002

    Article  Google Scholar 

  5. Kilic, G.: Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. J. Cult. Herit. 16, 526–535 (2015). https://doi.org/10.1016/j.culher.2014.09.010

    Article  Google Scholar 

  6. Sfarra, S., Ibarra-Castanedo, C., Ridolfi, S., Cerichelli, G., Ambrosini, D., Paoletti, D., Maldague, X.: Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl. Phys. A Mater. Sci. Process. 115, 1041–1056 (2014). https://doi.org/10.1007/s00339-013-7939-1

    Article  Google Scholar 

  7. Rebollo, E., Nodari, L., Russo, U., Bertoncello, R., Scardellato, C., Romano, F., Ratti, F., Poletto, L.: Non-invasive multitechnique methodology applied to the study of two 14th century canvases by Lorenzo Veneziano. J. Cult. Herit. 14, e153–e160 (2013). https://doi.org/10.1016/j.culher.2012.10.020

    Article  Google Scholar 

  8. Capineri, L., Falorni, P., Ivashov, S., Zhuravlev, A., Vasiliev, I., Razevig, V., Bechtel, T., Stankiewicz, G.: Combined holographic subsurface radar and infrared thermography for diagnosis of the conditions of historical structures and artworks. Near Surf. Geophys. 8, 355–364 (2010). https://doi.org/10.3997/1873-0604.2010005

    Article  Google Scholar 

  9. Zhu, Y.K., Tian, G.Y., Lu, R.S., Zhang, H.: A review of optical NDT technologies. Sensors 11, 7773–7798 (2011). https://doi.org/10.3390/s110807773

    Article  Google Scholar 

  10. Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Integrated approach between pulsed thermography, near-infrared reflectography and sandwich holography for wooden panel paintings advanced monitoring. Russ. J. Nondestruct. Test. 47, 284–293 (2011). https://doi.org/10.1134/S1061830911040097

    Article  Google Scholar 

  11. O’Riordan, C.: Art conservation: the cost of saving great works of art. Emory Int. Law Rev. 32, 409 (2018). https://doi.org/10.3366/ajicl.2011.0005

    Article  Google Scholar 

  12. Marijnissen, R.: Degradation, conservation, and restoration of works of art: historical overview. CeROArt (2015). https://doi.org/10.4000/ceroart.4785

    Article  Google Scholar 

  13. Nodari, L., Tresin, L., Benedetti, A., Tufano, M.K., Tomasin, P.: Conservation of contemporary art: alteration phenomena in a XXI century artwork. From contactless in situ investigations to laboratory accelerated ageing tests. J. Cult. Herit. 35, 288–296 (2019). https://doi.org/10.1016/j.culher.2018.12.006

    Article  Google Scholar 

  14. Fabbri, B.: Science and Conservation for Museum Collections. Nardini, Messina (2012)

    Google Scholar 

  15. Beardsley, B.H., Dardes, K., Rothe, A.: The structural conservation of panel paintings. In: Proceedings of a Symposium at the Paul Getty Museum, Los Angeles (1998). http://hdl.handle.net/10020/gci_pubs/panelpaintings

  16. Cennamo, P., Barone Lumaga, M., Ciniglia, C., Soppelsa, O., Moretti, A.: Heterotrophic components of biofilms on wood artefacts. J. Wood Sci. 64, 417–426 (2018)

    Article  Google Scholar 

  17. Planinsic, G.: Infrared thermal imaging: fundamentals, research and applications. Eur. J. Phys. 32, 1431 (2011). https://doi.org/10.1088/0143-0807/32/5/B01

    Article  Google Scholar 

  18. Meola, C., Boccardi, S., Maria Carlomagno, G.: Infrared thermography basics. Infrared Thermogr. Eval. Aerosp. Compos. Mater. (2017). https://doi.org/10.1016/b978-1-78242-171-9.00003-6

    Article  Google Scholar 

  19. Maldague, X.P.V.: Introduction to NDT by active infrared thermography. Mater. Eval. 60, 1060–1073 (2002)

    Google Scholar 

  20. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79, 2694–2698 (1996). https://doi.org/10.1063/1.362662

    Article  Google Scholar 

  21. Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: Physical principles, theory and data processing. NDTE Int. 73, 28–52 (2015). https://doi.org/10.1016/j.ndteint.2015.03.003

    Article  Google Scholar 

  22. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., Bulnes, F.G.: Infrared thermography for temperature measurement and non-destructive testing. Sensors (Switzerland) 14, 12305–12348 (2014). https://doi.org/10.3390/s140712305

    Article  Google Scholar 

  23. Ibarra-Castanedo, C., Maldague, X.: Pulsed phase thermography reviewed. Quant. Infrared Thermogr. J. 1, 47–70 (2004). https://doi.org/10.3166/qirt.1.47-70

    Article  Google Scholar 

  24. Sfarra, S., Perilli, S., Paoletti, D., Ambrosini, D.: Ceramics and defects: Infrared thermography and numerical simulations—a wide-ranging view for quantitative analysis. J. Therm. Anal. Calorim. 123, 43–62 (2016). https://doi.org/10.1007/s10973-015-4974-5

    Article  Google Scholar 

  25. Vavilov, V., Kauppinen, T., Grinzato, E.: Thermal characterization of defects in building envelopes using long square pulse and slow thermal wave techniques. Res. Nondestruct. Eval. 9, 181–200 (1997). https://doi.org/10.1080/09349849709414473

    Article  Google Scholar 

  26. Sfarra, S. Bendada, A., Paoletti, A., Paoletti, D., Ambrosini, D., Ibarra-castanedo, C. Maldague, X.: Square pulse thermography (SPT) and digital speckle photography (DSP): non-destructive testing (NDT) techniques applied to the defects detection in aerospace materials. In: Proceedings of the 2nd Int. Symp. NDT Aerosp., pp. 1–8 (2010)

  27. Orazi, N.: The study of artistic bronzes by infrared thermography: a review. J. Cult. Herit. 42, 280–289 (2020). https://doi.org/10.1016/j.culher.2019.08.005

    Article  Google Scholar 

  28. Peeters, J., Van der Snickt, G., Sfarra, S., Legrand, S., Ibarra-Castanedo, C., Janssens, K., Steenackers, G.: IR reflectography and active thermography on artworks: the added value of the 1.5–3 μm band. Appl. Sci. (2018). https://doi.org/10.3390/app8010050

    Article  Google Scholar 

  29. Laureti, S., Malekmohammadi, H., Rizwan, M.K., Burrascano, P., Sfarra, S., Mostacci, M., Ricci, M.: Looking through paintings by combining hyper-spectral imaging and pulse-compression thermography. Sensors (Switzerland) 19, 1–24 (2019). https://doi.org/10.3390/s19194335

    Article  Google Scholar 

  30. Mercuri, F., Cicero, C., Orazi, N., Paoloni, S., Marinelli, M., Zammit, U.: Infrared thermography applied to the study of cultural heritage. Int. J. Thermophys. 36, 1189–1194 (2015). https://doi.org/10.1007/s10765-014-1645-x

    Article  Google Scholar 

  31. Gavrilov, D., Maev, R.G., Almond, D.P.: A review of imaging methods in analysis of works of art: thermographic imaging method in art analysis. Can. J. Phys. 92, 341–364 (2014). https://doi.org/10.1139/cjp-2013-0128

    Article  Google Scholar 

  32. Maev, R.G., Gavrilov, D.: Thermography in analysis of works of art: choice of the optimal approach. In: Proceedings of the 13th Int. Symp. Nondestruct. Charact. Mater., pp. 20–24 (2013). www.ndt.net/?id=15545

  33. Theodorakeas, P., Ibarra-Castanedo, C., Sfarra, S., Avdelidis, N.P., Koui, M., Maldague, X., Paoletti, D., Ambrosini, D.: NDT inspection of plastered mosaics by means of transient thermography and holographic interferometry. NDTE Int. 47, 150–156 (2012). https://doi.org/10.1016/j.ndteint.2012.01.004

    Article  Google Scholar 

  34. Ambrosini, D., Daffara, C., Di Biase, R., Paoletti, D., Pezzati, L., Bellucci, R., Bettini, F.: Integrated reflectography and thermography for wooden paintings diagnostics. J. Cult. Herit. 11, 196–204 (2010). https://doi.org/10.1016/j.culher.2009.05.001

    Article  Google Scholar 

  35. Ibarra-castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X., Pontieri, P.E., Aq, R.P.: Infrared vision for the nondestructive assessment of panel paintings. CINDE J. 31, 5–9 (2010)

    Google Scholar 

  36. Arndt, R.W.: Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 53, 246–253 (2010). https://doi.org/10.1016/j.infrared.2010.03.002

    Article  Google Scholar 

  37. Bruzzone, R., Galassi, M.C.: Wood species in Italian panel paintings of the fifteenth and sixteenth centuries: historical investigation and microscopical wood identification. In: Archetype Publications-The National Gallery (ed.) Studying Old Master paintings. Technology and Practice, pp. 253–259. M. Spring, London (2011)

    Google Scholar 

  38. Fioravanti, M.: Le specie legnose dei supporti: implicazioni per la conoscenza, la conservazione ed il restauro dei dipinti su tavola. In: Uzielli, L., Casazza, O. (eds.) Conservazione dei dipinti su tavola, pp. 83–107. Firenze, Nardini (1998)

    Google Scholar 

  39. Schweingruber, F.H.: Anatomie europäischer Hölzer. Ein Atlas zur Bestimmung europäischer Baum‐, Strauch‐ und Zwergstrauchhölzer. 800 S., 3473 SW‐Fotos. Verlag Paul Haupt, Bern und Stuttgart (1990)

  40. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521–528 (2002). https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  41. Swita, R., Suszynski, Z.: Processing of thermographic sequence using Principal Component Analysis. Meas. Autom. Monit. 61, 215–218 (2015)

    Google Scholar 

  42. Sels, S., Bogaerts, B., Verspeek, S., Ribbens, B., Steenackers, G., Penne, R., Vanlanduit, S.: 3D Defect detection using weighted principal component thermography. Opt. Lasers Eng. (2020). https://doi.org/10.1016/j.optlaseng.2020.106039

    Article  Google Scholar 

  43. Winfree, W.P., Cramer, K.E., Zalameda, J.N., Howell, P.A., Burke, E.R.: Principal component analysis of thermographic data. Thermosense Therm. Infrared Appl. XXXVII 9485, 94850S (2015). https://doi.org/10.1117/12.2176285

    Article  Google Scholar 

  44. Marinetti, S., Grinzato, E., Bison, P.G., Bozzi, E., Chimenti, M., Pieri, G., Salvetti, O.: Statistical analysis of IR thermographic sequences by PCA. Infrared Phys. Technol. 46, 85–91 (2004). https://doi.org/10.1016/j.infrared.2004.03.012

    Article  Google Scholar 

  45. Rajic, N.: Principal component thermography, DSTO Technical Report TR-345 (2002)

  46. Saunders, D.: Photographic flash: threat or nuisance? Natl Gallery Tech. Bull. 16, 66 (1995)

    Google Scholar 

  47. UNI 10829:1999—Assets of historical and artisticinterest—Environmental conditions for Conservation—Measurement and analysis

Download references

Funding

This research was funded in the frame of the Project "POR CAMPANIA FESR 2014/2020 - REMIAM ex OPS- REte dei Musei Intelligenti and Avanzata Multimedialità".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Rippa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2606 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rippa, M., Pagliarulo, V., Lanzillo, A. et al. Active Thermography for Non-invasive Inspection of an Artwork on Poplar Panel: Novel Approach Using Principal Component Thermography and Absolute Thermal Contrast. J Nondestruct Eval 40, 21 (2021). https://doi.org/10.1007/s10921-021-00755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00755-z

Keywords

Navigation