Skip to main content
Log in

Acoustics of a viscoelastic medium with encapsulated bubbles

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, a modified Rayleigh-Lamb equation is derived that takes into account the radial vibrations of a gas bubble coated with a viscoelastic shell and located in an elastic medium. For small oscillations of inclusion, the problem of heat exchange between a gas, a liquid phase, a viscoelastic shell, and an elastic medium is solved. The energy integral is determined. In the case of small disturbances, the dispersion relation is found from the Rayleigh-Lamb equations, energy, and the known wave equation for the bubbly medium. An analytical expression of the equilibrium speed of sound is written out and its dependence on the size of the viscoelastic shell and the disturbance frequency is established. An example of a mixture of polydimethylsiloxane with air bubbles coated with a rubber shell illustrates the influence of the elasticity of the carrier medium and the shell of the bubbles on the dependence of the phase velocity and attenuation coefficient on the perturbation frequency. For a mixture of water with air bubbles coated with a rubber shell, the influence of the dependences of the shear modulus and viscosity of butyl rubber on the frequency of disturbances at different temperature on the dispersion curves is shown. A comparison of the theory with experimental data is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y. N., Jiang Z. B., Yuan J. et al. Influences of bubble size distribution on propagation of acoustic waves in dilute polydisperse bubbly liquids [J]. Journal of Hydrodynamics, 2019, 31(1): 50–57.

    Article  Google Scholar 

  2. Zhang Y., Gao Y., Guo Z. et al. Effect of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids [J]. Ultrasonics Sonochemistry, 2018, 40(Part A): 120–127.

    Article  Google Scholar 

  3. Zhang Y., Gao Y., Du X. Stability mechanisms of oscillating vapor bubbles in acoustic fields [J]. Ultrasonics Sonochemistry, 2018, 40(Part A): 808–814.

  4. Zhang Y., Guo Z., Du X. Wave propagation in liquids with oscillating vapor-gas bubbles [J]. Applied Thermal Engineering, 2018, 133: 483–492.

    Article  Google Scholar 

  5. Fuster D., Montel F. Mass transfer effects on linear wave propagation in diluted bubbly liquids [J]. Journal of Fluid Mechanics, 2015, 779: 598–621.

    Article  MathSciNet  Google Scholar 

  6. Gubaidullin D. A., Fedorov Y. V. Sound waves in a liquid with polydisperse vapor-gas bubbles [J]. Acoustical Physics, 2016, 62(2): 179–186.

    Article  Google Scholar 

  7. Gubaidullin D. A., Fedorov Y. V. Effect of phase transitions on the reflection of acoustic waves from the boundary of a vapor-gas-liquid mixture [J]. High Temperature, 2018, 56(2): 306–308.

    Article  Google Scholar 

  8. Gubaidullin D. A., Fedorov Y. V. Peculiarities of acoustic wave reflection from a boundary or layer of a two-phase medium [J]. Acoustical Physics, 2018, 64(2): 164–174.

    Article  Google Scholar 

  9. Wilson P. S., Roy R. A., Carey W. M. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency [J]. The Journal of the Acoustical Society of America, 2005, 117(4): 1895–1910.

    Article  Google Scholar 

  10. Duro V., Rajaona D. R., Decultot D. et al. Experimental study of sound propagation through bubbly water: Comparison with optical measurements [J]. Journal of Oceanic Engineering, 2011, 36(1): 114–125.

    Article  Google Scholar 

  11. Leroy V., Strybulevych A., Page J. H. et al. Sound velocity and attenuation in bubbly gels measured by transmission experiments [J]. The Journal of the Acoustical Society of America, 2008, 123(4): 1931–1940.

    Article  Google Scholar 

  12. Commander K. W., Prosperetti A. Linear pressure waves in bubbly liquids: Comparison between theory and experiments [J]. The Journal of the Acoustical Society of America, 1989, 85(2): 732–746.

    Article  Google Scholar 

  13. Chung N. M., Lin W. K. Sound velocity and its relationship with interfacial area density in a steam/water, two-phase bubbly flow [J]. Flow Measurements and Instrumentation, 1992, 3(2): 65–71.

    Article  MathSciNet  Google Scholar 

  14. Gubaidullin D. A., Fedorov Y. V. Sound waves in two-fraction polydisperse bubbly media [J]. Journal of Applied Mathematics and Mechanics, 2013, 77(5): 532–540.

    Article  MathSciNet  Google Scholar 

  15. Varaksin A. Y. Fluid dynamics and thermal physics of two-phase flows: Problems and achievements [J]. High Temperature, 2013, 51(3): 377–407.

    Article  Google Scholar 

  16. Prosperetti A. Vapor bubbles [J]. Annual Review of Fluid Mechanics, 2017, 49: 221–248.

    Article  MathSciNet  Google Scholar 

  17. Goldberg B. B., Raichlen J. S., Editors F. F. Ultrasound contrast agents. Basic principles and clinical applications [M]. London, UK: Martin Dunitz, 2001.

    Google Scholar 

  18. Sboros V. Response of contrast agents to ultrasound [J]. Advanced Drug Delivery Reviews, 2008, 60: 1117–1136.

    Article  Google Scholar 

  19. Ma X., Wang X., Hahn K. et al. Motion control of urea-powered biocompatible hollow microcapsules [J]. ACS Nano, 2016, 10: 3597–3605.

    Article  Google Scholar 

  20. Church C. C. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles [J]. The Journal of the Acoustical Society of America, 1995, 97(3): 1510–1521.

    Article  Google Scholar 

  21. Hoff L., Sontum P. C., Hovem J. M. Oscillations of polymeric microbubbles: Effects of the encapsulating shell [J]. The Journal of the Acoustical Society of America, 2000, 107(4): 2272–2280.

    Article  Google Scholar 

  22. Gubaidullin D. A., Fedorov Y. V. Acoustic waves in a liquid with gas bubbles covered by a viscoelastic shell [J]. Fluid Dynamics, 2019, 54(2): 270–278.

    Article  Google Scholar 

  23. Nigmatulin R. I. Dynamic of multiphase media [M]. New York, USA: Hemisphere, 1990.

    Google Scholar 

  24. Landau L. D., Lifshitz E. M. Course of theoretical physics. V.6. Hydrodynamic [M]. New York, USA: Pergamon, 1959.

    Google Scholar 

  25. Petrov A. G. Analytical hydrodynamic [M]. Moscow, Russia: Fizmatlit, 2010.

    Google Scholar 

  26. Yang X., Church C. C. A model for the dynamics of gas bubbles in soft tissue [J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3595–3606.

    Article  Google Scholar 

  27. Landau L. D., Lifshitz E. M. Course of theoretical physics. V.7. Theory and elasticity [M]. New York, USA: Pergamon, 1959.

    Google Scholar 

  28. Leroy V., Strybulevich A., Page J. H. et al. Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers [J]. Physical Review E, 2011, 83(4): 046605.

    Article  Google Scholar 

  29. Sarkar K., Shi W. T., Chatterjee D. et al. Charac terization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation [J]. The Journal of the Acoustical Society of America, 2005, 118(1): 539–550.

    Article  Google Scholar 

  30. Doinikov A. A., Dayton P. A. Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents [J]. The Journal of the Acoustical Society of America, 2007, 121(6): 3331–3340.

    Article  Google Scholar 

  31. Marmottant P., Meer S., Emmer M. et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture [J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3499–3505.

    Article  Google Scholar 

  32. Drobny J. G. Handbook of thermoplastic elastomers [M]. New York, USA: William Andrew Publishing, 2007.

    Google Scholar 

  33. Capps R. N. Elastomeric materials for acoustical applications [C]. Technical Report AD-A216872, Orlando, USA: Naval Research Laboratory, 1989.

    Google Scholar 

  34. Lee K. M., Wilson P. S., Wochner M. S. Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory [J]. The Journal of the Acoustical Society of America, 2017, 142(6): 3443–3449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri V. Fedorov.

Additional information

Biography

Damir A. Gubaidullin (1957-), Male, Professor, E-mail: gubaidullin@imm.knc.ru

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Fedorov, Y.V. Acoustics of a viscoelastic medium with encapsulated bubbles. J Hydrodyn 33, 55–62 (2021). https://doi.org/10.1007/s42241-021-0003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0003-2

Key words

Navigation