Skip to main content
Log in

Arbuscular mycorrhizal fungi communities associated with wild plants in a coastal ecosystem

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) form a near-ubiquitous mutualistic association with roots to help plants withstand harsh environments, and play a key role in the establishment of coastal beach plant communities. Yet little is known about the structure and composition of AMF communities on coastal beaches of eastern China. In this study, we investigated the occurrence, community composition and diversity of AMF associated with common wild plants on a coastal beach of North Jiangsu, China. Almost all of the local wild species were colonized by AMF except for Chenopodium album L. Thirty-seven AMF species were isolated from the rhizosphere belonging to 12 genera in seven families. Glomus was the dominant genus and Funneliformis mosseae the dominant species. The colonization, spore composition and diversity of AMF were strongly related to edaphic factors. Sodium (Na+) ions in the soil significantly and negatively affected the colonization rate by AMF and both soil Na+ levels and pH had a significant negative effect on AMF spore density and evenness. However, there was a significant positive correlation between species richness and total organic carbon. The results provide insights into soil factors affecting native AMF communities in coastal beach habitats which could benefit vegetation recovery and soil reclamation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alguacil MM, Lumini E, Roldán A, Sakinas-Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18(2):527–536

    CAS  PubMed  Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111(1):45–49

    Google Scholar 

  • Álvarez-Sánchez J, Johnson NC, Antoninka A, Chaudhary VB, Lau MK, Owen SM, Guadarrama P, Castillo S (2012) Large-scale diversity patterns in spore communities of arbuscular mycorrhizal fungi. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers Inc., New York, pp 29–47

    Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19(4):239–246

    CAS  PubMed  Google Scholar 

  • Bencherif K, Boutekrabt A, Dalpé Y, Sahraoui AH (2016) Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Appl Soil Ecol 107:182–190

    Google Scholar 

  • Blaszkowski J, Czerniawska B (2011) Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of Bornholm (Denmark). Acta Soc Bot Pol 80(1):63–76

    Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4):1108–1115

    PubMed  Google Scholar 

  • Cai XB, Peng YL, Gai JP (2010) Ecological distribution of arbuscular mycorrhizal fungi in alpine grasslands of Tibet Plateau. Chin J Appl Ecol 21(10):2635–2644 (in Chinese)

    Google Scholar 

  • Camprubí A, Calvet C, Cabot P, Pitet M, Estaún V (2010) Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes. Span J Agric Res 8(1):96–102

    Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2003) Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agrofor Syst 58(1):33–43

    Google Scholar 

  • Cardoso EJBN, Bini D, Vasconcellos RLF, Bini D, Miyauchi MYH, dos Santos CA, Alves PRL, de Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70(4):274–289

    Google Scholar 

  • Carvalho F, de Souza FA, Carrenho R, de Souza Moreira FM, da Conçeição Jesus E, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19

    Google Scholar 

  • Chen Z, He XL, Guo HJ, Yao XQ, Chen C (2012) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, north China. Symbiosis 57(3):149–160

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (2010) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130(2):259–265

    Google Scholar 

  • da Silva IR, de Mello CMA, Alves Ferreira Neto R, Alves da Silva DK, de Melo AL, Oehl F, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semiarid. Appl Soil Ecol 84:166–175

    Google Scholar 

  • da Silva IR, de Souza FA, Alves da Silva DK, Oehl F, Maia LC (2017) Patterns of arbuscular mycorrhizal fungal distribution on mainland and island sandy coastal plain ecosystems in Brazil. Microb Ecol 74(3):654–669

    PubMed  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Yong JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36(2–3):203–209

    CAS  PubMed  Google Scholar 

  • de Oliveira Freitas R, Buscardo E, Nagy L, dos Santos Maciel AB, Carrenbo R, Luizão RC (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24(1):21–32

    PubMed  Google Scholar 

  • del Mar Alguacil M, Torres MP, Montesinos-Navarro A, Roldán A (2016) Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid Mediterranean soils. Appl Environ Microb 82(11):3348–3356

    Google Scholar 

  • Ding NN, Wang BS, Liang ZH, Liu DH (2011) Effects of different amelioration measures on coastal saline soil in the David’s deer reserve of Dafeng county of Jiangsu province. Soils 43(3):487–492 (in Chinese)

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Estrada B, Aroca R, Azón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013a) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimua for successful establishment and growth under saline condition. Plant Soil 370:175–185

    CAS  Google Scholar 

  • Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013b) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friese CF, Koske RE (1991) The spatial dispersion of spores of vesicular-arbuscular mycorrhizal fungi in a sand dune: microscale patterns associated with the root architecture of American beach grass. Mycol Res 95(8):952–957

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46(2):235–244

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500

    Google Scholar 

  • Goto BT, Jardim JG, da Silva GA, Furrazola E, Torres-Arias Y, Oehl F (2012) Glomus trufemii (Glomeromycetes), a new sporocarpic species from Brazilian sand dunes. Mycotaxon 120(1):1–9

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153(2):335–344

    Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani AF, Aldehaish HA, Egamberdieva D, Abd-Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10(4):175–183

    CAS  Google Scholar 

  • Ievinsh G (2006) Biological basis of biological diversity: physiological adaptations of plants to heterogeneous habitats along a sea coast. Acta Univ Latv 710:53–79

    Google Scholar 

  • Jefwa JM, Sinclair R, Maghembe JA (2006) Diversity of glomale mycorrhizal fungi in maize/sesbania intercrops and maize monocrop systems in Southern Malawi. Agrofor Syst 67(2):107–114

    Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48(9):692

    Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16(5):371–379

    CAS  PubMed  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231(1):65–79

    CAS  Google Scholar 

  • Kamble VR (2012) Status of AM fungi in some medicinal plants from panambur beach mangalore India. J Pharm Biol Sci 3(4):1–4

    Google Scholar 

  • Kamble VR, Agre DG, Dixit GB (2012) Incidence of arbuscular mycorrhizal fungi in indian squill: drimia indica from coastal sand dunes of Konkan, India. J Pharm Biol Sci 4(3):31–36

    Google Scholar 

  • Koske RE (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79(1):55–68

    Google Scholar 

  • Koske RE, Gemma JN (1996) Arbuscular mycorrhizal fungi in Hawaiian sand dunes: Island of Kauai. Pac Sci 50(1):36–45

    Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüssler A (2012) Phylogenetic reference data for systematic and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193(4):970–984

    PubMed  Google Scholar 

  • Kulkarni SS, Raviraja NS, Sridhar KR (1997) Arbuscular mycorrhizal fungi of tropical sand dunes of west coast of India. J Coast Res 13(3):931–936

    Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95(1):95–105

    Google Scholar 

  • Li JL, Sun YQ, Jiang XL, Chen BD, Zhang X (2018) Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicol Environ Saf 157:235–243

    CAS  PubMed  Google Scholar 

  • Liu RJ, Wang FY (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13(3):123–127

    CAS  PubMed  Google Scholar 

  • Liu S, Guo XL, Feng G, Maimaitiaili B, Fan JL, He XH (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398(1–2):195–206

    CAS  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biot 89(4):917–930

    CAS  Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2007) Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. For Ecol Manag 241(1–3):145–154

    Google Scholar 

  • Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol Tech 13(12):893–897

    CAS  Google Scholar 

  • Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol 84(1):27–35

    Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2(2):191–199

    PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No 939, US Gov Print Office, Washington

  • Pereira CMR, Alves da Silva DK, de Almeida Ferreira AC, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agric Ecosyst Environ 185(3):245–252

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Google Scholar 

  • Pontes JS, Oehl F, Pereira CD, Machado CT, Coyne D, da Silva DK, Maia LC (2017) Diversity of arbuscular mycorrhizal fungi in the Brazilian’s Cerrado and in soybean under conservation and conventional tillage. Appl Soil Ecol 117–118:178–189

    Google Scholar 

  • Purin S, Rillig MC (2008) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51(2):123–130

    Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52(9):1569–1582

    CAS  PubMed  Google Scholar 

  • Rodríguez-Echeverría S, Hol WHG, Freitas H, Eason WR, Cool R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44(1):30–36

    Google Scholar 

  • Sarkar A, Asaeda T, Wang QY, Kaneko Y, Rashid MH (2017) Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora 234:60–68

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic Publications, Corvallis

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Libraries at the royal botanical garden Edinburgh, the royal botanic garden Kew, botanische staatssammlung Munich, and Oregon State University

  • Shannon CE, Weaver W, Wiener N (1949) The mathematical theory of communication. The University of Illinois Press, Urbana

    Google Scholar 

  • Sheng M, Tang M, Zhang FF, Huang YH (2011) Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia. Biodivers Sci 19(1):85–92

    CAS  Google Scholar 

  • Soka GE, Ritchie ME (2018) Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape, Tanzania. Appl Soil Ecol 125:222–232

    Google Scholar 

  • Stürmer SL, Bellei MM (1994) Composition and seasonal variation of spore populations of arbuscular mycorrhizal fungi in dune soils on the island of Santa Catarina, Brazil. Can J Bot 72(3):359–363

    Google Scholar 

  • Stürmer SL, Stürmer R, Pasqualini D (2013) Taxonomic diversity and community structure of arbuscular mycorrhizal fungi (Phylum Glomeromycota) in three maritime sand dunes in Santa Catarina state, south Brazil. Fungal Ecol 6(1):27–36

    Google Scholar 

  • Sun L, Zhu ZS, Liu Y, Zhang JL (2004) Evaluation of service values of the intertidal land eco-system of Dafeng city. Rural Eco-environ 20(3):10–14 (in Chinese)

    Google Scholar 

  • Sylvia DM, Will ME (1988) Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl Environ Microbiol 54(2):348–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    CAS  Google Scholar 

  • Tang M (2007) Diversity and distribution of arbuscular mycorrhizal fungi in saline alkaline soil, Inner Mongolia. Acta Pedol Sin 44(6):1105–1110 (in Chinese)

    Google Scholar 

  • Tedersoo L, Bahram M, Pölme S, Köijalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Pöldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pӓrtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson NRH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel AD, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6213):1–10

    Google Scholar 

  • Tian H, Gaia JP, Christie P, Li XL (2009) Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia. Eur J Soil Biol 45(4):321–327

    Google Scholar 

  • Trufem SFB (1990) Aspectos ecológicos de fungos micorrízicos vesículo-arbusculares da mata tropical úmida da Ilha do Cardoso, SP, Brasil. Acta Bot Bras 4(2):31–45

    Google Scholar 

  • Turrini A, Agnolucci M, Palla M, Tomé E, Tagliavini M, Scandellari F, Giovannetti M (2017) Species diversity and community composition of native arbuscular mycorrhizal fungi in apple roots are affected by site and orchard management. Appl Soil Ecol 116:42–54

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Strietwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungi diversity determines the plant diversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vierheilig H, Ocampo JA (1990) Role of root extract and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis 9:199–202

    Google Scholar 

  • Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T (1996) Resistance of Urtica dioica to mycorrhizal colonization: a possible involment of Urtica dioica agglutinin. Plant Soil 183:131–136

    CAS  Google Scholar 

  • Wang YS, Liu RJ (2017) A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota. Mycosystema 36(7):820–850 (in Chinese)

    CAS  Google Scholar 

  • Wang S, Lin X, Shi YQ (2001) Effects of arbuscular mycorrhiza on resistance of plants to environmental stress. Chin J Ecol 20(3):27–30 (in Chinese)

    CAS  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14(2):133–137

    PubMed  Google Scholar 

  • Wang JJ, Qiang W, Liu HY, Ge JL, Zuo YL, He XL (2017) Effects of plants pecies on diversity of arbuscular mycorrhizal fungi in extremely arid desert environment. Mycosystema 36(7):861–869 (in Chinese)

    Google Scholar 

  • Wang JP, Wang GG, Zhang B, Yuan ZM, Fu ZY, Yuan YD, Zhu LJ, Shilin Ma, Zhang JC (2019) Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests 10(5):424

    Google Scholar 

  • Wicaksono WA, Sansom CE, Jones EE, Perry NB, Monk J, Ridgway HJ (2017) Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content. Symbiosis 75:39–50

    Google Scholar 

  • Wilson B, Sykes MT (1999) Is zonation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecol Lett 2(4):233–236

    Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2009) Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50(2):100–105

    CAS  Google Scholar 

  • Zhang Y, Guo LD, Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261:257–263

    CAS  Google Scholar 

  • Zhang YF, Qi BI, Yang YF, Zhang ZH, Hu CJ, Zhao SS, Wang XG (2015) Arbuscular mycorrhizal fungi diversity in saline-alkaline Leymus chinensis grasslands on the Songnen Plain. Acta Prataculturae Sin 24(9):80–88 (in Chinese)

    CAS  Google Scholar 

  • Zhang T, Hu YJ, Zhang K, Tian CY, Guo JX (2018) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod 117:13–19

    CAS  Google Scholar 

  • Zhao XF, Yang JS, Yao RJ (2010) Relationship between soil salt dynamics and factors of water balance in the typical coastal area of Northern Jiangsu Province. Trans CSAE 26(3):52–57 (in Chinese)

    CAS  Google Scholar 

  • Zhao H, Li XZ, Zhang ZM, Zhao Y, Yang JT, Zhu YW (2017) Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China. Peer J 5(12):e4155

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Nan Yang of Nanjing Forestry University for his suggestions in writing this manuscript, and Dafeng Forest Farm for assistance in field work. We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was funded by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province of China [Grant No. CX (17) 004], the National Special Fund for Forestry Scientific Research in the Public Interest (Grant No. 201504406), Major Fund for Natural Science of Jiangsu Higher Education Institutions (Grant No. 15KJA220004), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Doctorate Fellowship Foundation of Nanjing Forestry University (2169125).

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, S., Wang, G.G. et al. Arbuscular mycorrhizal fungi communities associated with wild plants in a coastal ecosystem. J. For. Res. 32, 683–695 (2021). https://doi.org/10.1007/s11676-020-01127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01127-5

Keywords

Navigation