Skip to main content
Log in

Both Rigid Organic Ligands and pH-Controlled Three Keggin-Type Polyoxotungstates Derivates: Synthesis, Crystal Structure

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Three Keggin polyoxotungstate inorganic–organic hybrid compounds have been synthesized under hydrothermal conditions by using H4SiW12O40 as starting materials: [{CuII(2,2′-bipy)2}2SiW12O40]·2H2O (1), [{CuII(phen)2}2SiW12O40] (2) and [{CuI(2,2′-bipy)2}4SiW12O40] (3) (2,2′-bipy = 2,2′-bipyridine, phen = 1,10′-phenanthroline) and structurally characterized by elemental analysis, IR spectra, TG analysis and X-ray single-crystal diffraction. Three compounds are all based on [SiW12O40]4− α-Keggin type building block and synthesized under the same reaction condition, only different compound 1 and 2 ligand, 1 and 3 pH value. Compound 1 displays a novel example of two-dimensional framework with tetra-supporting α-Keggin polyanions which are linked by four same fragments and it becomes 3D structure due to the existence of hydrogen bonds. Compound 2 shows that the bi-supporting polyoxotungstate molecule consists of a α-Keggin polyoxoanion [SiW12O40]4− and a pair of transition metal complex fragments which are covalently linked to opposite sides of the surface terminal oxygen atoms of WO6 octahedra. Compound 3 consists of α-[SiW12O40]4− polyoxoanions, counter cations [Cu(2,2′-bipy)2]+. The crystal packing is stabilized by H-bonds and weak π–π interactions, leads to a 3D supramolecular architecture. The results show that the pH value of the reaction system plays a crucial role in structural control of self-assembled processes. The thermal stabilities of the compounds are discussed.

Graphical Abstract

Three Keggin polyoxotungstate inorganic–organic hybrid compounds have been synthesized under hydrothermal conditions by using H4SiW12O40 as starting materials: [{CuII(2,2′-bipy)2}2SiW12O40]·2H2O (1), [{CuII(phen)2}2SiW12O40] (2) and [{CuI(2,2′-bipy)2}4SiW12O40] (3) (2,2′-bipy = 2,2′-bipyridine, phen = 1,10′-phenanthroline) and structurally characterized by elemental analysis, IR spectra, TG analysis and X-ray single-crystal diffraction. Three compounds are all based on [SiW12O40]4− α-Keggin type building block and synthesized under the same reaction condition, only different compound 1 and 2 ligand, 1 and 3 pH value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Arefian, M. Mirzaei, H. Eshtiagh-Hosseini, and A. Frontera (2017). Dalton Trans. 46, 6812–6829.

    Article  CAS  Google Scholar 

  2. A. Misra, I. F. Castillo, D. P. Müller, C. González, S. Eyssautier-Chuine, A. Ziegler, J. M. de la Fuente, S. G. Mitchell, and C. Streb (2018). Angew. Chem. Int. Ed. 57, 14926–14931.

    Article  CAS  Google Scholar 

  3. A. Bijelic, M. Aureliano, and A. Rompel (2019). Angew. Chem. Int. Ed. 58, 2980–2999.

    Article  CAS  Google Scholar 

  4. M. Zhao, Y. Fang, L. H. Ma, X. Y. Zhu, L. Jiang, M. X. Li, and Q. X. Han (2020). J. Inorg. Biochem. 210, 111131. https://doi.org/10.1016/j.jinorgbio.2020.111131.

    Article  CAS  PubMed  Google Scholar 

  5. Y. J. Gong, Y. X. Guo, Q. Z. Hu, C. Wang, L. Zang, and L. Yu (2017). ACS Sustainable Chem. Eng. 5, 3650–3658.

    Article  CAS  Google Scholar 

  6. Y. Y. Hu, T. T. Zhang, X. Zhang, D. C. Zhao, X. B. Cui, Q. S. Huo, and J. Q. Xu (2016). Dalton Trans. 45, 2562–2573.

    Article  CAS  Google Scholar 

  7. H. R. Ghalebi, S. Aber, and A. Karimi (2016). J. Mol. Catal. A Chem. 415, 96–103.

    Article  Google Scholar 

  8. W. L. Zhou, Y. P. Zheng, and J. Peng (2018). J. Solid. State. Chem. 258, 786–791.

    Article  CAS  Google Scholar 

  9. Y. Ammari, E. Dhahri, M. Rzaigui, E. K. Hlil, and S. Abid (2016). J. Clust. Sci. 27, 1213–1227.

    Article  CAS  Google Scholar 

  10. H. Zhang, X. K. Lin, Y. Yan, and L. X. Wu (2006). Chem. Comm. 44, 4575–4577.

    Article  Google Scholar 

  11. Y. Zhang, X. Bo, A. Nsabimana, A. Munyentwali, M. Li, L. Guo, and C. Han (2015). Biosens. Bioelectron. 66, 191–197.

    Article  CAS  Google Scholar 

  12. P. He, W. L. Chen, J. P. Li, H. Zhang, Y. W. Li, and E. B. Wang (2020). Sci. Bull. 65, 35–44.

    Article  CAS  Google Scholar 

  13. J. F. Keggin (1933). Nature 131, 908–909.

    Article  CAS  Google Scholar 

  14. F. X. Ma, Y. G. Chen, D. M. Shi, F. X. Meng, and H. J. Pang (2008). Trans. Met. Chem. 33, 697–703.

    Article  CAS  Google Scholar 

  15. F. X. Ma, Y. G. Chen, H. Y. Yang, X. W. Dong, H. Jiang, and F. Wang (2018). J. Clust. Sci. 30, 123–129.

    Article  Google Scholar 

  16. Z. Z. He, D. Ma, B. R. Cao, X. Q. Li, and Y. Lu (2018). Inorg. Chim. Acta. 471, 316–325.

    Article  CAS  Google Scholar 

  17. Dutta, M. Dolai, S. Biswas, A. Dutta, and M. Ali (2020). Polyhedron 176, 114204. https://doi.org/10.1016/j.poly.2019.114204.

  18. Y. Hou, H. J. Pang, L. Zhang, B. N. Li, J. J. Xin, K. Q. Li, H. Y. Ma, X. M. Wang, and L. C. Tan (2020). J. Power Sources 446, 227319. https://doi.org/10.1016/j.jpowsour.2019.227319.

    Article  CAS  Google Scholar 

  19. C. L. Pan, J. Q. Xu, Y. Sun, D. Q. Chu, L. Ye, Z. L. Lü, and T. G. Wang (2003). Inorg. Chem. Commun. 6, 233–237.

    CAS  Google Scholar 

  20. G. N. Wang, T. T. Chen, C. J. Gómez-García, F. Zhang, M. Y. Zhang, H. Y. Ma, H. J. Pang, X. M. Wang, and L. C. Tan (2020). Small. https://doi.org/10.1002/smll.202001626.

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Lu, F. X. Meng, D. M. Shi, and Y. G. Chen (2008). Trans. Met. Chem. 33, 353–359.

    Article  CAS  Google Scholar 

  22. K. Liu, F. X. Meng, F. X. Ma, and Y. G. Chen (2007). Chem. Res. Chin. Univ. 23, 391–394.

    Article  Google Scholar 

  23. A. X. Tian, J. Ying, J. Peng, J. Q. Sha, H. J. Pang, P. P. Zhang, Y. Chen, M. Zhu, and Z. M. Su (2009). Inorg. Chem. 48, 100–110.

    Article  CAS  Google Scholar 

  24. K. Liu, F. X. Meng, and Y. G. Chen (2007). Trans. Met. Chem. 32, 350–354.

    Article  CAS  Google Scholar 

  25. C. M. Liu, D. Q. Zhang, M. Xiong, and D. B. Zhu (2002). Chem. Commun. 1416–1417.

  26. Z. G. Han, Y. L. Zhao, J. Peng, H. Y. Ma, Q. Liu, E. B. Wang, N. H. Hu, and H. Q. Jia (2005). Eur. J. Inorg. Chem. 2, 264–271.

  27. C. M. Liu, D. Q. Zhang, C. Y. Xu, and D. B. Zhu (2004). Solid State Sci. 6, 689–696.

    Article  CAS  Google Scholar 

  28. L. M. Rodrigguez-Albelo, A. R. Ruiz-Salvador, A. Sampieri, D. W. Lewis, A. Gómez, B. Nohra, P. Mialane, J. Marrot, F. Sécheresse, C. Mellot-Draznieks, R. N. Biboum, B. Keita, L. Nadjo, and A. Dolbecq (2009). J. Am. Chem. Soc. 131, 16078–16087.

    Article  Google Scholar 

  29. M. Mirzaei, H. Eshtiagh-Hosseini, and A. Hassanpoor (2019). Inorg. Chim. Acta. 484, 332–337.

    Article  CAS  Google Scholar 

  30. Rigaku, PROCESS-AUTO (Rigaku Corporation, Tokyo, Japan, 1998).

    Google Scholar 

  31. L. J. Farrugia (2012). J. Appl. Crystallogr. 45, 849–854.

    Article  CAS  Google Scholar 

  32. G. M. Sheldrick (2015). Acta. Crystallogr. A71, 3–8.

    Google Scholar 

  33. G. M. Sheldrick (2015). Acta. Crystallogr. C71, 3–8.

    Google Scholar 

  34. S. H. Feng and R. R. Xu (2001). Acc. Chem. Res. 34, 239–247.

    Article  CAS  Google Scholar 

  35. Z. Y. Shi, X. J. Gu, J. Peng, and Y. H. Chen (2005). J. Solid. State Chem. 178, 1988–1995.

    Article  CAS  Google Scholar 

  36. L. F. Chen, M. J. Turo, M. Gembicky, R. A. Reinicke, and A. M. Schimpf (2020). Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202005627.

  37. X. Y. Zhang, R. Xi, S. L. Yin, X. R. Cao, Y. L. Zhang, L. Lin, R. Chen, and H. Wu (2018). J. Solid State. Chem. 258, 737–743.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Construction Disciplines of Biology, Jilin Agricultural Science and Technology University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Xia Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, FX., Chen, YG., Jiang, JK. et al. Both Rigid Organic Ligands and pH-Controlled Three Keggin-Type Polyoxotungstates Derivates: Synthesis, Crystal Structure. J Clust Sci 33, 707–715 (2022). https://doi.org/10.1007/s10876-021-02001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02001-y

Keywords

Navigation