Skip to main content
Log in

Blepharidium guatemalense, an obligate nickel hyperaccumulator plant from non-ultramafic soils in Mexico

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Nickel hyperaccumulation in Blepharidium guatemalense Standl. (Rubiaceae) was found in the tropical forests of south-eastern Mexico. This study aimed to document the geographic extent of nickel hyperaccumulation in this species, to understand its process of hyperaccumulation and to explore nickel distribution within the tissues of this plant. To accomplish these objectives, a complete non-destructive elemental screening of herbarium specimens was performed with a hand-held X-ray fluorescence spectrometer. Besides, rhizosphere soils and plant tissues were collected in Mexico and analyzed for physical–chemical parameters. Finally, elemental distribution maps of nickel and other elements in plant tissues were obtained by X-ray fluorescence spectroscopy and microscopy. This study revealed that Blepharidium guatemalense is distributed throughout Chiapas, Tabasco and Campeche, reaching the maximum nickel concentration in leaves (4.3 wt%) followed by roots and seeds (2.0 wt%) and bark (1.8 wt%). Simultaneous hyperaccumulation of cobalt and nickel was found in 15% of the herbarium specimens. Blepharidium guatemalense has uncommon re-distribution mechanisms via phloem since this tissue is the highest nickel-enriched from all parts of the plant (from roots to leaves). A high total nickel (mean of 610 µg g−1) was found in rhizosphere soils even though no evidence of ophiolite emplacement in that area has been reported. Blepharidium guatemalense represents the first hypernickelophore (> 1 wt% Ni) to be reported as growing in soils that are neither ultramafic nor enriched by anthropogenic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker AJM, Proctor J, Reeves RD (1992) Hyperaccumulation of Nickel by the Flora of the Ultramafics of Palawan, Republic of the Philippines. In: The Vegetation of Ultramafic (Serpentine) Soils : Proceedings of the First International Conference on Serpentine Ecology, University of California, Davis, 19-22 June 1991. Intercept, Andover, Hampshire, England, p 14

  • Bhatia NP, Orlic I, Siegele R et al (2003) Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytol 160:479–488. https://doi.org/10.1046/j.1469-8137.2003.00912.x

    Article  CAS  PubMed  Google Scholar 

  • Boyd RS, Jaffré T (2009) Elemental concentrations of eleven New Caledonian plant species from serpentine soils : elemental correlations and leaf-age effects. Northeast Nat 16:93–110. https://doi.org/10.1656/045.016.0508

    Article  Google Scholar 

  • Braun DM, Wang L, Ruan Y-L (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signaling to enhance crop yield and food security. J Exp Bot 65:1713–1735. https://doi.org/10.1093/jxb/ert416

    Article  CAS  PubMed  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD et al (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc Lond B Biol Sci 203:387–403. https://doi.org/10.1098/rspb.1979.0005

    Article  CAS  PubMed  Google Scholar 

  • Dar MI, Naikoo MI, Green ID et al (2018) Heavy metal hyperaccumulation and hypertolerance in brassicaceae. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress: responses, tolerance and remediation. Springer, Singapore, pp 263–276

    Chapter  Google Scholar 

  • Deng T-H-B, Tang Y-T, van der Ent A et al (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45. https://doi.org/10.1007/s11104-016-2825-1

    Article  CAS  Google Scholar 

  • Deng T-H-B, van der Ent A, Tang Y-T et al (2018) Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423:1–11. https://doi.org/10.1007/s11104-017-3539-8

    Article  CAS  Google Scholar 

  • Díaz PG, Ruiz CJA, Medina GG et al (2006) Estadísticas Climatológicas Basicas del estado de Tabasco (Periodo 1961-2003). Veracruz, México

  • Estrade N, Cloquet C, Echevarria G et al (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–35. https://doi.org/10.1016/j.epsl.2015.04.018

    Article  CAS  Google Scholar 

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud. https://doi.org/10.1186/s40529-017-0167-9

    Article  PubMed  PubMed Central  Google Scholar 

  • García E (2004) Modificaciones al Sistema de Clasificación Climática de Köppen, 5th edn. Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad de Mexico

  • Gei V, Erskine PD, Harris HH et al (2018) Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants. Springer International Publishing, Cham, pp 117–133

    Chapter  Google Scholar 

  • Gei V, Isnard S, Erskine PD, et al (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc 194:1–22. https://doi.org/10.1093/botlinnean/boaa029

  • Hernández-Quiroz M, Herre A, Cram S et al (2012) Pedogenic, lithogenic or anthropogenic origin of Cr, Ni and V in soils near a petrochemical facility in Southeast Mexico. CATENA 93:49–57. https://doi.org/10.1016/j.catena.2012.01.005

    Article  CAS  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR et al (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205. https://doi.org/10.1007/BF00012246

    Article  CAS  Google Scholar 

  • INEGI (2005) Marco Geoestadístico Municipal (2005) Prontuario de Información Geográfica Municipal. Tacotalpa, Tabasco

    Google Scholar 

  • INIFAP-CONABIO (1995) Edafología, escalas 1:250000 - 1:1000000

  • Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle-Callédonie, Psychotria douarrei (G. Beauvisage) Däniker. 1727–1730

  • Keeling SM, Stewart RB, Anderson CWN, Robinson BH (2003) Nickel and Cobalt Phytoextraction by the Hyperaccumulator Berkheya coddii : Implications for Polymetallic Phytomining and Phytoremediation. Int J Phytoremediat 5:235–244. https://doi.org/10.1080/713779223

    Article  CAS  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Lange B, van der Ent A, Baker AJM et al (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551. https://doi.org/10.1111/nph.14175

    Article  CAS  PubMed  Google Scholar 

  • Levy Tacher SI, Aguirre Rivera JR, García Perez JD, Martínez Romero MM (2006) Aspectos florísticos de Lacanhá Chansayab, Selva Lacandona, Chiapas. Acta Botánica Mex 77:69–98. https://doi.org/10.21829/abm77.2006.1026

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Manns U, Bremer B (2010) Towards a better understanding of intertribal relationships and stable tribal delimitations within Cinchonoideae s.s. (Rubiaceae). Mol Phylogenet Evol 56:21–39. https://doi.org/10.1016/j.ympev.2010.04.002

  • Markert B (1992) Establishing of “Reference Plant” for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut 64:533–538. https://doi.org/10.1007/BF00483363

    Article  CAS  Google Scholar 

  • McCartha GL, Taylor CM, Ent A et al (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. Am J Bot 106:1377–1385. https://doi.org/10.1002/ajb2.1362

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Vega J, Messing I (2005) The influence of land use and fallow period on the properties of two calcareous soils in the humid tropics of southern Mexico. CATENA 60:279–292. https://doi.org/10.1016/j.catena.2004.12.002

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Prozesky VM, Pineda CA (1997) Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 130:368–373. https://doi.org/10.1016/S0168-583X(97)00228-0

    Article  Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii, Desv.Atti Della Societ a Toscana di Scienze Naturali, Residente in Pisa,Serie A55:49–77

  • Müllerried FKG (1957) La Geología de Chiapas. Gobierno Constitucional del Estado de Chiapas

  • Navarrete Gutiérrez DM, Pons M-N, Cuevas Sánchez JA, Echevarria G (2018) Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico? Ecol Res 33:641–649. https://doi.org/10.1007/s11284-018-1574-4

    Article  CAS  Google Scholar 

  • Nelson C (1988) Blepharidium guatemalense. The IUCN Red list of threatened species, p e.T30687A9566678. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T30687A9566678.en.

  • Nkrumah PN, Chaney RL, Morel JL (2021a) Agronomy of ‘Metal Crops’ used in agromining. In: van der Ent A, Baker AJM, Echevarria G et al (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 23–46

    Chapter  Google Scholar 

  • Nkrumah PN, Navarrete Gutiérrez DM, Tisserand R et al (2021b) Element case studies: nickel (Tropical Regions). In: van der Ent A, Baker AJM, Echevarria G et al (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 365–383

    Chapter  Google Scholar 

  • Ochoa-Gaona S, Hernández-Vázquez F, Jong BHJD, Gurri-García FD (2007) Pérdida de diversidad florística ante un gradiente de intensificación del sistemaagrícola de roza-tumba-quema: un estudio de caso en la Selva Lacandona, Chiapas, México. Bot Sci. https://doi.org/10.17129/botsci.1766

    Article  Google Scholar 

  • Ortega-Gutiérrez F (1992) Carta geológica de la República Mexicana. [Mexico, D.F.]: Consejo de Recursos Minerales y en el Instituto de Geología de la UNAM.

  • Ortiz-Hernández LE, Escamilla-Casas JC, Flores-Castro K et al (2006) Características geológicas y potencial metalogenético de los principales complejos ultramáficos-máficos de México. Bol Soc Geol Mex LVIII:161–181

    Article  Google Scholar 

  • Page V, Feller U (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5:447–463. https://doi.org/10.3390/agronomy5030447

    Article  CAS  Google Scholar 

  • Palma-López D, Triano SA (2007) Plan de uso sustentable de los suelos de Tabasco. Vol. II, 2nda Reimpresión. ed. COLEGIO DE POSTGRADUADOS-ISPROTAB, Villahermosa, Tabasco. México. 180 p.

  • Pennington TD, Sarukhán J (2005) Árboles tropicales de México: manual para la identificación de las principales especies, 3rd edn. Universidad Autónoma de México & Fondo de Cultura Económica (Mexico), México

    Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17. https://doi.org/10.1016/j.plantsci.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124. https://doi.org/10.1078/1433-8319-00045

    Article  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65. https://doi.org/10.1023/A:1022572517197

    Article  CAS  Google Scholar 

  • Reeves RD (2008) Adigüzel N (2008) The Nickel Hyperaccumulating Plants of the Serpentines of Turkey and Adjacent Areas: A Review with New Data. Turk J Biol Year 32(3):143–153

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38. https://doi.org/10.1006/anbo.1998.0786

    Article  CAS  Google Scholar 

  • Reeves R, Baker AJM, Jaffré T et al (2018a) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411. https://doi.org/10.1111/nph.14907

    Article  PubMed  Google Scholar 

  • Reeves RD, van der Ent A, Baker AJM (2018b) Global distribution and ecology of hyperaccumulator plants. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 75–92

    Chapter  Google Scholar 

  • Ricked M, Hernández HM, Sousa M, Ochoterena H (2013) Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae. Rev Mex Biodivers 84:439–470. https://doi.org/10.7550/rmb.32013

    Article  Google Scholar 

  • Rova JHE, Delprete PG, Bremer B (2009) The Rondeletia complex (Rubiaceae): an attempt to use ITS, rps16, and trnL-F sequence data to delimit Guettardeae, Rondeletieae, and sections within Rondeletia 1. Ann Mo Bot Gard 96:182–193. https://doi.org/10.3417/2006179

    Article  Google Scholar 

  • Schroer CG, Boye P, Feldkamp JM et al (2010) Hard X-ray nanoprobe at beamline P06 at PETRA III. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 616:93–97. https://doi.org/10.1016/j.nima.2009.10.094

    Article  CAS  Google Scholar 

  • SGM (2006) Carta Geológica Minera “Las Margaritas” E15-12 D15-3 Chiapas

  • SGM (2017) Cartografía Geológica de la República Mexicana escala 1:250,000.

  • Solé VA, Papillon E, Cotte M et al (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc 62:63–68. https://doi.org/10.1016/j.sab.2006.12.002

    Article  CAS  Google Scholar 

  • Standley PC (1918) Blepharidium, a new genus of Rubiaceae from Guatemala. J Wash Acad Sci 8:58–60

    Google Scholar 

  • Standley PC (1940) Rubiaceae, Blepharidium. In: Studies of American plants-X. Field Museum of Natural History, Botanical series ; v. 22, no 2, Chicago [Ill.], pp 108–109

  • Standley PC, Williams LO (1975) Blepharidium standley. In: Flora of Guatemala. [Chicago] : Field Museum of Natural History, Fieldiana. Botany; v.24, pt.11, nos.1-3, Chicago, ill., pp 17–18

  • Tappero R, Peltier E, Gräfe M et al (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654. https://doi.org/10.1111/j.1469-8137.2007.02134.x

    Article  CAS  PubMed  Google Scholar 

  • van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644. https://doi.org/10.1093/jxb/41.6.631

    Article  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408. https://doi.org/10.1007/s10886-015-0573-y

    Article  CAS  PubMed  Google Scholar 

  • van der Pas L, Ingle RA (2019) Towards an understanding of the molecular basis of nickel hyperaccumulation in plants. Plants. https://doi.org/10.3390/plants8010011

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN et al (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861. https://doi.org/10.1038/srep41861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Mak R, de Jonge MD, Harris HH (2018) Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-26891-7

    Article  CAS  Google Scholar 

  • van der Ent A, van der Echevarria G, Pollard AJ, Erskine PD (2019a) X-Ray fluorescence ionomics of herbarium collections. Sci Rep 9:1–5. https://doi.org/10.1038/s41598-019-40050-6

    Article  CAS  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Echevarria G, Erskine PD (2019b) Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58. https://doi.org/10.1016/j.gexplo.2019.03.013

    Article  CAS  Google Scholar 

  • Villanueva López G, Martínez Surimendi P, Van der Wal H (2015) Árboles y arbustos en áreas ganaderas de Tabasco.pdf. Ecofronteras 54:14–17

    Google Scholar 

  • Villaseñor JL (2016) Checklist of the native vascular plants of México. Rev Mex Biodivers. https://doi.org/10.1016/j.rmb.2016.06.017

    Article  Google Scholar 

  • WCSP (2019) World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://wcsp.science.kew.org/ Retrieved 1 December 2019

Download references

Acknowledgements

The authors acknowledge the Centre National de la Recherche Scientifique (CNRS) in France through the X-LIFE Research Program for their financial support. In particular, they wish to thank Dr. Sylvain Merlot (IB2C, CNRS), scientific coordinator of the X-TREM project. The first author conveys her sincere gratitude to the Consejo Nacional de Ciencia y Tecnología (CONACyT) in Mexico and to the French National Research Agency, reference ANR-10-LABX-21—LABEX RESSOURCES21 for PhD funding. The Groupement d’Intérêt Scientifique sur les Friches Industrielles (GISFI) from the Université de Lorraine kindly supplied a hand-held XRF instrument. This research was partly undertaken at P06 at Deutsches Elektronen Synchrotron (DESY), a member of the Helmholtz Association (HGF). The research has been also supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The micro-XRF instrumentation was co-funded by ICEEL (Carnot Institute)-CREGU-LabEX Ressources 21 (ANR-10-LABX 21-LABEX RESSOURCES 21) and FEDER. Special acknowledgments to MSc Blanca V. Juarez Jaimes (MEXU herbarium) for plant identification, to Ing. Francisco Navarrete Torralba for his valuable contribution to this research, to MSc. Jorge A. Ramírez Espinosa, and all the students from the Universidad Tecnológica de la Selva (UTS) (Nancy, Saúl, Sebastián, Simón, Moisés y Francisco) for their enormous help during field surveys. The authors are also grateful to Haley Disinger for the enrichment of the database (XRF screening data from the MO herbarium in Saint Louis), to Vanessa Invernon for her support at the Pherbarium (Muséum National d'Histoire Naturelle in Paris) and to all the technicians from MEXU herbarium for their valuable cooperation. We would like to thank Kathryn Spiers and Jan Garrevoet for their assistance during the experiments. We wish to thank Professor Alan Baker (The Universities of Melbourne and Queensland, Australia) for reviewing the paper and suggesting improvements to the text.

Author information

Authors and Affiliations

Authors

Contributions

The content of the manuscript has not been published or submitted for publication elsewhere in any language. All authors have contributed significantly to the realization of the manuscript in different ways.

Corresponding author

Correspondence to Dulce Montserrat Navarrete Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Marko Rohlfs.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (186 324 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete Gutiérrez, D.M., Pollard, A.J., van der Ent, A. et al. Blepharidium guatemalense, an obligate nickel hyperaccumulator plant from non-ultramafic soils in Mexico. Chemoecology 31, 169–187 (2021). https://doi.org/10.1007/s00049-021-00338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-021-00338-4

Keywords

Navigation