Skip to main content

Advertisement

Log in

Parenteral Nutrition and Cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Parenteral nutrition (PN) is a life-saving nutritional therapy for those situations when patients are unable to receive enteral nutrition. However, despite a multitude of benefits offered by PN, it is associated with a variety of side effects, most notably parenteral nutrition-associated liver disease (PNALD). Adverse effects of PN on other organ systems, such as brain and cardiovascular system, have been poorly studied. There have been several case reports, studies, and a recent animal study highlighting cardiotoxic effects of PN; however, much remains unclear about the underlying mechanisms causing cardiac damage. In this review, we propose a series of potential mechanisms behind PN-associated heart injury, and we provide an overview of therapeutic strategies and recent scientific advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chowdary, K. V., & Reddy, P. N. (2010). Parenteral nutrition: Revisited. Indian Journal of Anaesthesia, 54(2), 95–103.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu, Z. W., & Li, Y. S. (2012). Pathogenesis and treatment of parenteral nutrition-associated liver disease. Hepatobiliary & Pancreatic Diseases International, 11(6), 586–593.

    Article  CAS  Google Scholar 

  3. Martinez, M., & Ballabriga, A. (1987). Effects of parenteral nutrition with high doses of linoleate on the developing human liver and brain. Lipids, 22(3), 133–138.

    Article  CAS  PubMed  Google Scholar 

  4. Bertinet, D. B., et al. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 24(4), 223–227.

    Article  CAS  PubMed  Google Scholar 

  5. Hayes, B. D., et al. (2016). Systematic review of clinical adverse events reported after acute intravenous lipid emulsion administration. Clinical Toxicology (Philadelphia, PA), 54(5), 365–404.

    Article  CAS  Google Scholar 

  6. Abel, R. M., Fisch, D., & Grossman, M. L. (1983). Hemodynamic effects of intravenous 20% soy oil emulsion following coronary bypass surgery. JPEN Journal of Parenteral and Enteral Nutrition, 7(6), 534–540.

    Article  CAS  PubMed  Google Scholar 

  7. Suchner, U., et al. (2001). Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Critical Care Medicine, 29(8), 1569–1574.

    Article  CAS  PubMed  Google Scholar 

  8. Marfella, R., et al. (2001). Elevated plasma fatty acid concentrations prolong cardiac repolarization in healthy subjects. American Journal of Clinical Nutrition, 73(1), 27–30.

    Article  CAS  Google Scholar 

  9. Barson, A. J., Chistwick, M. L., & Doig, C. M. (1978). Fat embolism in infancy after intravenous fat infusions. Archives of Disease in Childhood, 53(3), 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hulman, G., & Levene, M. (1986). Intralipid microemboli. Archives of Disease in Childhood, 61(7), 702–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole, J. B., Stellpflug, S. J., & Engebretsen, K. M. (2014). Asystole immediately following intravenous fat emulsion for overdose. Journal of Medical Toxicology, 10(3), 307–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naidoo, D. P., Singh, B., & Haffejee, A. (1992). Cardiovascular complications of parenteral nutrition. Postgraduate Medical Journal, 68(802), 629–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naidoo, D. P., et al. (1989). Acute pernicious beriberi in a patient receiving parenteral nutrition. A case report. South African Medical Journal, 75(11), 546–548.

    CAS  PubMed  Google Scholar 

  14. Warren, M., et al. (2013). Pericardial effusion and cardiac tamponade in neonates: Sudden unexpected death associated with total parenteral nutrition via central venous catheterization. Annals of Clinical and Laboratory Science, 43(2), 163–171.

    PubMed  Google Scholar 

  15. Demircan, M., et al. (2015). Damaging effects of total parenteral nutrition formula on vascular endothelium. Journal of Pediatric Gastroenterology and Nutrition, 61(4), 464–468.

    Article  CAS  PubMed  Google Scholar 

  16. Hagiwara, S., et al. (2008). Effect of enteral versus parenteral nutrition on inflammation and cardiac function in a rat model of endotoxin-induced sepsis. Shock, 30(3), 280–284.

    Article  CAS  PubMed  Google Scholar 

  17. Gurunluoglu, K., et al. (2020). Investigation of the cardiotoxic effects of parenteral nutrition in rabbits. Journal of Pediatric Surgery, 55(3), 465–474.

    Article  PubMed  Google Scholar 

  18. Hasanoglu, A., et al. (2005). Free oxygen radical-induced lipid peroxidation and antioxidant in infants receiving total parenteral nutrition. Prostaglandins Leukotrienes and Essential Fatty Acids, 73(2), 99–102.

    Article  CAS  Google Scholar 

  19. Ma, J., et al. (2018). Hyperglycemia is associated with cardiac complications in elderly nondiabetic patients receiving total parenteral nutrition. Medicine (Baltimore), 97(6), e9537.

    Article  CAS  Google Scholar 

  20. Gosmanov, A. R., & Umpierrez, G. E. (2013). Management of hyperglycemia during enteral and parenteral nutrition therapy. Current Diabetes Reports, 13(1), 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, H., Koh, S. O., & Park, M. S. (2011). Higher dextrose delivery via TPN related to the development of hyperglycemia in non-diabetic critically ill patients. Nutrition Research Practice, 5(5), 450–454.

    Article  CAS  PubMed  Google Scholar 

  22. Cheung, N. W., et al. (2005). Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral nutrition. Diabetes Care, 28(10), 2367–2371.

    Article  PubMed  Google Scholar 

  23. Lin, L. Y., et al. (2007). Hyperglycemia correlates with outcomes in patients receiving total parenteral nutrition. American Journal of the Medical Sciences, 333(5), 261–265.

    Article  Google Scholar 

  24. Korshunov, S. S., Skulachev, V. P., & Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters, 416(1), 15–18.

    Article  CAS  PubMed  Google Scholar 

  25. Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625.

    Article  CAS  Google Scholar 

  26. Volpe, C. M. O., et al. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2), 119.

    Article  Google Scholar 

  27. Nogueira-Machado, J. A., & Chaves, M. M. (2008). From hyperglycemia to AGE-RAGE interaction on the cell surface: A dangerous metabolic route for diabetic patients. Expert Opinion on Therapeutic Targets, 12(7), 871–882.

    Article  CAS  PubMed  Google Scholar 

  28. Krakauer, T. (2015). Inflammasome, mTORC1 activation, and metabolic derangement contribute to the susceptibility of diabetics to infections. Medical Hypotheses, 85(6), 997–1001.

    Article  CAS  PubMed  Google Scholar 

  29. Mount, P. F., Kemp, B. E., & Power, D. A. (2007). Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. Journal of Molecular and Cellular Cardiology, 42(2), 271–279.

    Article  CAS  PubMed  Google Scholar 

  30. Siragusa, M., & Fleming, I. (2016). The eNOS signalosome and its link to endothelial dysfunction. Pflugers Archiv European Journal of Physiology, 468(7), 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  31. Cosentino, F., et al. (1997). High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation, 96(1), 25–28.

    Article  CAS  PubMed  Google Scholar 

  32. Katusic, Z. S. (2001). Vascular endothelial dysfunction: Does tetrahydrobiopterin play a role? American Journal of Physiology-Heart and Circulatory Physiology, 281(3), H981–H986.

    Article  CAS  PubMed  Google Scholar 

  33. Gebhart, V., et al. (2019). Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide, 89, 14–21.

    Article  CAS  PubMed  Google Scholar 

  34. Fiorentino, T. V., et al. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design, 19(32), 5695–5703.

    Article  CAS  PubMed  Google Scholar 

  35. Yuyun, M. F., Ng, L. L., & Ng, G. A. (2018). Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvascular Research, 119, 7–12.

    Article  CAS  PubMed  Google Scholar 

  36. Knowles, R. G., & Moncada, S. (1994). Nitric oxide synthases in mammals. The Biochemical Journal, 298(Pt 2), 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soskić, S. S., et al. (2011). Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. The Open Cardiovascular Medicine Journal, 5, 153–163.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang, P., Cao, Y., & Li, H. (2010). Hyperglycemia induces inducible nitric oxide synthase gene expression and consequent nitrosative stress via c-Jun N-terminal kinase activation. American Journal of Obstetrics and Gynecology, 203(2), 185.e5–11.

    Article  Google Scholar 

  39. McNeill, E., et al. (2015). Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology Medicine, 79, 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huisman, A., et al. (2002). Anti-inflammatory effects of tetrahydrobiopterin on early rejection in renal allografts: Modulation of inducible nitric oxide synthase. The FASEB Journal, 16(9), 1135–1137.

    Article  CAS  PubMed  Google Scholar 

  41. Xia, Y., et al. (1998). Inducible nitric-oxide synthase generates superoxide from the reductase domain. Journal of Biological Chemistry, 273(35), 22635–22639.

    Article  CAS  Google Scholar 

  42. Lind, M., et al. (2017). Inducible nitric oxide synthase: Good or bad? Biomedicine & Pharmacotherapy, 93, 370–375.

    Article  CAS  Google Scholar 

  43. Fujimoto, M., et al. (2005). A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes, 54(5), 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  44. Konstantoulaki, M., Kouklis, P., & Malik, A. B. (2003). Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(2), L434–L442.

    Article  CAS  PubMed  Google Scholar 

  45. Di, A., Mehta, D., & Malik, A. B. (2016). ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium, 60(3), 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ide, T., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88(5), 529–535.

    Article  CAS  PubMed  Google Scholar 

  47. Pacher, P., & Szabó, C. (2006). Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Current Opinion in Pharmacology, 6(2), 136–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lum, H., & Roebuck, K. A. (2001). Oxidant stress and endothelial cell dysfunction. American Journal of Physiology. Cell Physiology, 280(4), C719–C741.

    Article  CAS  PubMed  Google Scholar 

  49. Pacher, P., et al. (2005). Nitrosative stress and pharmacological modulation of heart failure. Trends in Pharmacological Sciences, 26(6), 302–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kar, S., et al. (2010). Redox-control of matrix metalloproteinase-1: A critical link between free radicals, matrix remodeling and degenerative disease. Respiratory Physiology & Neurobiology, 174(3), 299–306.

    Article  CAS  Google Scholar 

  51. Kim, H. E., et al. (2000). Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. Journal of Clinical Investigation, 106(7), 857–866.

    Article  CAS  PubMed Central  Google Scholar 

  52. Verma, S., et al. (2002). Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. Journal of Thoracic and Cardiovascular Surgery, 123(6), 1074–1083.

    Article  CAS  Google Scholar 

  53. Bendall, J. K., et al. (2014). Tetrahydrobiopterin in cardiovascular health and disease. Antioxidants & Redox Signaling, 20(18), 3040–3077.

    Article  CAS  Google Scholar 

  54. Cai, S., Khoo, J., & Channon, K. M. (2005). Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovascular Research, 65(4), 823–831.

    Article  CAS  PubMed  Google Scholar 

  55. Group, P.-D., et al. (2006). Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology, 113(12), 2221–2230.

    Article  Google Scholar 

  56. Idris, I., & Donnelly, R. (2006). Protein kinase C beta inhibition: A novel therapeutic strategy for diabetic microangiopathy. Diabetes and Vascular Disease Research, 3(3), 172–178.

    Article  PubMed  Google Scholar 

  57. Wilson, C. H., et al. (2015). Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. The Biochemical Journal, 466(2), 379–390.

    Article  CAS  PubMed  Google Scholar 

  58. Cross, A. R., & Segal, A. W. (2004). The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochimica et Biophysica Acta, 1657(1), 1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaquet, V., et al. (2009). Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxidants & Redox Signaling, 11(10), 2535–2552.

    Article  CAS  Google Scholar 

  60. Kahles, T., et al. (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 38(11), 3000–3006.

    Article  CAS  PubMed  Google Scholar 

  61. Sedeek, M., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: Implications in type 2 diabetic nephropathy. American Journal of Physiology. Renal Physiology, 299(6), F1348–F1358.

    Article  CAS  PubMed  Google Scholar 

  62. Williams, H. C., & Griendling, K. K. (2007). NADPH oxidase inhibitors: New antihypertensive agents? Journal of Cardiovascular Pharmacology, 50(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, W., et al. (2017). Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomedicine & Pharmacotherapy, 86, 32–40.

    Article  CAS  Google Scholar 

  64. Gray, S. P., et al. (2017). Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia, 60(5), 927–937.

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, D., et al. (2015). Exogenous hydrogen sulfide attenuates cardiac fibrosis through reactive oxygen species signal pathways in experimental diabetes mellitus models. Cellular Physiology and Biochemistry, 36(3), 917–929.

    Article  CAS  PubMed  Google Scholar 

  66. Das, A., et al. (2014). Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: Potential role of attenuated oxidative stress and altered contractile protein expression. Journal of Biological Chemistry, 289(7), 4145–4160.

    Article  CAS  Google Scholar 

  67. Esteghamati, A., et al. (2013). Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial. Clinical Nutrition, 32(2), 179–185.

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Z. H., et al. (2010). Triptolide reduces proteinuria in experimental membranous nephropathy and protects against C5b-9-induced podocyte injury in vitro. Kidney International, 77(11), 974–988.

    Article  CAS  PubMed  Google Scholar 

  69. Fortuno, A., et al. (2009). Losartan metabolite EXP3179 blocks NADPH oxidase-mediated superoxide production by inhibiting protein kinase C: Potential clinical implications in hypertension. Hypertension, 54(4), 744–750.

    Article  CAS  PubMed  Google Scholar 

  70. Meng, R., et al. (2011). Anti-oxidative effect of apocynin on insulin resistance in high-fat diet mice. Annals of Clinical and Laboratory Science, 41(3), 236–243.

    CAS  PubMed  Google Scholar 

  71. Taye, A., & Morawietz, H. (2011). Spironolactone inhibits NADPH oxidase-induced oxidative stress and enhances eNOS in human endothelial cells. Iranian Journal of Pharmaceutical Research, 10(2), 329–337.

    CAS  PubMed  Google Scholar 

  72. Vendrov, A. E., et al. (2010). NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. Journal of Biological Chemistry, 285(34), 26545–26557.

    Article  CAS  Google Scholar 

  73. Duboc, H., Taché, Y., & Hofmann, A. F. (2014). The bile acid TGR5 membrane receptor: From basic research to clinical application. Digstive and Liver Disease, 46(4), 302–312.

    Article  CAS  Google Scholar 

  74. Kawamata, Y., et al. (2003). A G protein-coupled receptor responsive to bile acids. Journal of Biological Chemistry, 278(11), 9435–9440.

    Article  CAS  Google Scholar 

  75. Maruyama, T., et al. (2006). Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. Journal of Endocrinology, 191(1), 197–205.

    Article  CAS  Google Scholar 

  76. Watanabe, M., et al. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075), 484–489.

    Article  CAS  PubMed  Google Scholar 

  77. Eblimit, Z., et al. (2018). TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovascular Therapeutics, 36(5), e12462.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kumar, D. P., et al. (2012). Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochemical and Biophysical Research Communications, 427(3), 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jain, A. K., et al. (2016). Oleanolic acid improves gut atrophy induced by parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition, 40(1), 67–72.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Y. D., et al. (2011). The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology, 54(4), 1421–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perino, A., et al. (2014). TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. Journal of Clinical Investigation, 124(12), 5424–5436.

    Article  Google Scholar 

Download references

Funding

The work was indirectly supported by the National Institutes of Health [Grants Numbers K08DK098623, R03EB015955-01] and the DeNardo Foundation. No direct funding was received related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan van Nispen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

This review did not involve experimentation on animal or human subjects; all relevant ethical standards regarding the preparation of this manuscript were upheld.

Additional information

Handling Editor: Lorraine Chalifour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Nispen, J., Voigt, M., Song, E. et al. Parenteral Nutrition and Cardiotoxicity. Cardiovasc Toxicol 21, 265–271 (2021). https://doi.org/10.1007/s12012-021-09638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09638-1

Keywords

Navigation