Skip to main content
Log in

Sustainable Electrical Discharge Machining of Nimonic C263 Superalloy

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nimonic C263, a nickel-based superalloy, finds extensive application in manufacturing of complex parts in gas turbine, aircraft and automotive industries exclusively for exhaust sections. Machining of the alloy through traditional approach is a difficult task owing to its poor thermal conductivity, work hardening and high strength properties. However, the superalloy can be machined up to desired accuracy by non-traditional machining processes like electrical discharge machining (EDM). Yet again, machining of these difficult-to-machine materials not only consumes a significant amount of energy, but also produces unpleasant noise, hindering the sustainable aspect of the process. To meet the requisite of sustainable EDM and explore the machinability, an experimental investigation is proposed in this work, when Nimonic C263 superalloy is machined with three different electrodes, viz. copper, tungsten, and copper–tungsten. Outcomes of important process parameters, viz. voltage (U), discharge current (I), pulse-on-time (Ton), duty factor (τ), and electrode material, are studied on the responses, viz. specific energy consumption, machining noise (N), material removal rate, electrode wear rate, surface roughness (Ra) and radial overcut (C). Analysis of variance is conducted to analyse the influence of each parameter on the responses. A scanning electron microscope investigation is carried out to analyse the pre-machining and post-machining scenarios on the machined surface. The multiple responses are converted into single response by calculating the net outranking flow by application of preference ranking organization method for enrichment evaluation (PROMETHEE) approach. The PROMITHEE-based results are further improved by using a hybrid cuckoo search algorithm (combined PROMITHEE-based cuckoo search). A confirmative test is further conducted on the optimum machining conditions obtained by the hybrid approach (combination of PROMITHEE and cuckoo search) indicating an overall improvement of 6.02% for the responses, validating the proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rajesha, S.; Sharma, A.K.; Kumar, P.: On electro discharge machining of Inconel 718 with hollow tool. J. Mater. Eng. Perform. 21(6), 882–891 (2012)

    Article  Google Scholar 

  2. Sabur, A.; Ali, M.Y.; Maleque, M.A.; Khan, A.A.: Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic. Procedia Eng. 56, 696–701 (2013)

    Article  Google Scholar 

  3. Zhang, Z.; Yu, H.; Zhang, Y.; Yang, K.; Li, W.; Chen, Z.; Zhang, G.: Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys. J. Clean. Prod. 198, 833–846 (2018)

    Article  Google Scholar 

  4. Ming, W.; Zhang, Z.; Wang, S.; Zhang, Y.; Shen, F.; Zhang, G.: Comparative study of energy efficiency and environmental impact in magnetic field assisted and conventional electrical discharge machining. J. Clean. Prod. 214, 12–28 (2019)

    Article  Google Scholar 

  5. Li, W.; Kara, S.: Characterising energy efficiency of electrical discharge machining (EDM) processes. Procedia Cirp 29, 263–268 (2015)

    Article  Google Scholar 

  6. Bagaber, S.A.; Yusoff, A.R.: Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316. J. Clean. Prod. 157, 30–46 (2017)

    Article  Google Scholar 

  7. Zhang, G.; Li, W.; Zhang, Y.; Huang, Y.; Zhang, Z.; Chen, Z.: Analysis and reduction of process energy consumption and thermal deformation in a micro-structure wire electrode electric discharge machining thin-wall component. J. Clean. Prod. 244, 118763 (2020)

    Article  Google Scholar 

  8. Franco, A.; Rashed, C.A.A.; Romoli, L.: Analysis of energy consumption in micro-drilling processes. J. Clean. Prod. 137, 1260–1269 (2016)

    Article  Google Scholar 

  9. Dong, H.; Liu, Y.; Li, M.; Zhou, Y.; Liu, T.; Li, D.; Sun, Q.; Zhang, Y.; Ji, R.: Sustainable electrical discharge machining using water in oil nanoemulsion. J. Manuf. Process. 46, 118–128 (2019)

    Article  Google Scholar 

  10. Singh, N.K.; Singh, Y.; Sharma, A.; Singla, A.; Negi, P.: An environmental-friendly electrical discharge machining using different sustainable techniques: a review. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1785210

    Article  Google Scholar 

  11. Torres, A.; Puertas, I.; Luis, C.J.: Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys. Precis. Eng. 40, 33–45 (2015)

    Article  Google Scholar 

  12. Lee, S.H.; Li, X.: Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. J. Mater. Process. Technol. 139(1–3), 315–321 (2003)

    Article  Google Scholar 

  13. Rahul, D.S.; Masanta, M.; Biswal, B.B.; Mahapatra, S.S.: Analysis on surface characteristics of electro-discharge machined Inconel 718. Int. J. Mater. Prod. Technol. 56(1–2), 135–168 (2018)

    Article  Google Scholar 

  14. Mohanty, C.P.; Mahapatra, S.S.; Singh, M.R.: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm. Eng. Sci. Technol. Int. J. 20(2), 552–562 (2017)

    Google Scholar 

  15. Tai, T.Y.; Lu, S.J.; Chen, Y.H.: Surface crack susceptibility of electrodischarge-machined steel surfaces. Int. J. Adv. Manuf. Technol. 57(9–12), 983 (2011)

    Article  Google Scholar 

  16. Bhaumik, M.; Maity, K.: Effect of electrode materials on different EDM aspects of titanium alloy. Silicon 11(1), 187–196 (2019)

    Article  Google Scholar 

  17. Mohanty, A.; Talla, G.; Gangopadhyay, S.: Experimental investigation and analysis of EDM characteristics of Inconel 825. Mater. Manuf. Process. 29(5), 540–549 (2014)

    Article  Google Scholar 

  18. Ming, W.; Jia, H.; Zhang, H.; Zhang, Z.; Liu, K.; Du, J.; Shen, F.; Zhang, G.: A comprehensive review of electric discharge machining of advanced ceramics. Ceram. Int. 46, 21813–21838 (2020)

    Article  Google Scholar 

  19. Kolli, M.; Kumar, A.: Effect of dielectric fluid with surfactant and graphite powder on electrical discharge machining of titanium alloy using Taguchi method. Eng. Sci. Technol. Int. J. 18(4), 524–535 (2015)

    Google Scholar 

  20. Kumar, S.; Dhingra, A.K.; Kumar, S.: Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy Inconel-800 using response surface methodology. Mech. Adv. Mater. Mod. Process. 3(1), 7 (2017)

    Article  Google Scholar 

  21. Kumar, S.; Batra, U.: Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J. Manuf. Process. 14(1), 35–40 (2012)

    Article  Google Scholar 

  22. Abdudeen, A.; Abu Qudeiri, J.E.; Kareem, A.; Ahammed, T.; Ziout, A.: Recent advances and perceptive insights into powder-mixed dielectric fluid of EDM. Micromachines 11(8), 754 (2020)

    Article  Google Scholar 

  23. Kumar, S.; Batish, A.; Singh, R.; Bhattacharya, A.: Effect of cryogenically treated copper–tungsten electrode on tool wear rate during electro-discharge machining of Ti–5Al–2.5 Sn alloy. Wear 386, 223–229 (2017)

    Article  Google Scholar 

  24. Goyal, A.: Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode. J. King Saud Univ. Sci. 29(4), 528–535 (2017)

    Article  Google Scholar 

  25. Mishra, D.K.; Datta, S.; Masanta, M.: Effects of tool electrode on EDM performance of Ti–6Al–4V. Silicon 10(5), 2263–2277 (2018)

    Article  Google Scholar 

  26. Datta, S.; Biswal, B.B.; Mahapatra, S.S.: Electrical discharge machining of Inconel 825 using cryogenically treated copper electrode: emphasis on surface integrity and metallurgical characteristics. J. Manuf. Process. 26, 188–202 (2017)

    Article  Google Scholar 

  27. Srivastava, V.; Pandey, P.M.: Study of ultrasonic assisted cryogenically cooled EDM process using sintered (Cu–TiC) tooltip. J. Manuf. Process. 15(1), 158–166 (2013)

    Article  Google Scholar 

  28. Arshad, R.; Mehmood, S.; Shah, M.; Imran, M.; Qayyum, F.: Effect of distilled water and kerosene as dielectrics on machining rate and surface morphology of Al-6061 during electric discharge machining. Adv. Sci. Technol. Res. J. 13, 162–169 (2019)

    Article  Google Scholar 

  29. Niamat, M.; Sarfraz, S.; Aziz, H.; Jahanzaib, M.; Shehab, E.; Ahmad, W.; Hussain, S.: Effect of different dielectrics on material removal rate, electrode wear rate and microstructures in EDM. Procedia Cirp 60, 2–7 (2017)

    Article  Google Scholar 

  30. Chen, S.L.; Yan, B.H.; Huang, F.Y.: Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. J. Mater. Process. Technol. 87(1–3), 107–111 (1999)

    Article  Google Scholar 

  31. Bose, G.; Mahapatra, K.: Multi criteria decision making of machining parameters for Die Sinking EDM Process. Int. J. Ind. Eng. Comput. 6(2), 241–252 (2015)

    Google Scholar 

  32. Dewangan, S.; Gangopadhyay, S.; Biswas, C.K.: Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach. Eng. Sci. Technol. Int. J. 18(3), 361–368 (2015)

    Google Scholar 

  33. Saravanan, M.; Thiyagarajan, C.; Somasundaram, S.: Parametric optimization of wirecut-electrical discharge machining through cuckoo search algorithm. Mater. Today Proc. 22, 681–687 (2019)

    Article  Google Scholar 

  34. Mohanty, C.P.; Mahapatra, S.S.; Singh, M.R.: A particle swarm approach for multi-objective optimization of electrical discharge machining process. J. Intell. Manuf. 27(6), 1171–1190 (2016)

    Article  Google Scholar 

  35. Mohanty, C.P.; Mahapatra, S.S.; Singh, M.R.: An experimental investigation of machinability of Inconel 718 in electrical discharge machining. Procedia Mater. Sci. 6, 605–611 (2014)

    Article  Google Scholar 

  36. Jung, J.H.; Kwon, W.T.: Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis. J. Mech. Sci. Technol. 24(5), 1083–1090 (2010)

    Article  Google Scholar 

  37. Majumder, A.; Das, P.K.; Majumder, A.; Debnath, M.: An approach to optimize the EDM process parameters using desirability-based multi-objective PSO. Prod. Manuf. Res. 2(1), 228–240 (2014)

    Google Scholar 

  38. Mohan, B.; Rajadurai, A.; Satyanarayana, K.G.: Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode. J. Mater. Process. Technol. 153–154, 978–985 (2004)

    Article  Google Scholar 

  39. Sahu, S.N.; Nayak, N.C.: Multi-objective optimisation of EDM process using ANN integrated with NSGA-II algorithm. Int. J. Manuf. Technol. Manag. 32(4–5), 381–395 (2018)

    Article  Google Scholar 

  40. Mandal, A.; Dixit, A.R.; Chattopadhyaya, S.; Paramanik, A.; Hloch, S.; Królczyk, G.: Improvement of surface integrity of Nimonic C263 super alloy produced by WEDM through various post-processing techniques. Int. J. Adv. Manuf. Technol. 93(1–4), 433–443 (2017)

    Article  Google Scholar 

  41. Rao, M.S.; Venkaiah, N.: Parametric optimization in machining of Nimonic-263 alloy using RSM and particle swarm optimization. Procedia Mater. Sci. 10, 70–79 (2015)

    Article  Google Scholar 

  42. Shastri, R.K.; Mohanty, C.P.: Machinability investigation on Nimonic C263 alloy in electric discharge machine. Mater. Today Proc 26, 529–533 (2020)

    Article  Google Scholar 

  43. Jadhav, P.S.; Mohanty, C.P.; Hotta, T.K.; Gupta, M.: An optimal approach for improving the machinability of Nimonic C-263 superalloy during cryogenic assisted turning. J. Manuf. Process. 58, 693–705 (2020)

    Article  Google Scholar 

  44. Jadhav, P.S.; Mohanty, C.P.; Shirguppikar, S.S.: Cryogenic treatment of Nimonic alloy-hard turning: state-of-the-art, challenges and future directions. Mater. Today Proc. 18, 4120–4132 (2019)

    Article  Google Scholar 

  45. Vulević, T.; Dragović, N.: Multi-criteria decision analysis for sub-watersheds ranking via the PROMETHEE method. Int. Soil Water Conserv. Res. 5(1), 50–55 (2017)

    Article  Google Scholar 

  46. Karande, P.; Chakraborty, S.: Application of PROMETHEE-GAIA method for non-traditional machining processes selection. Manag. Sci. Lett. 2(6), 2049–2060 (2012)

    Article  Google Scholar 

  47. Rao, R.V.; Rai, D.P.; Balic, J.: Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method. J. Intell. Manuf. 30(5), 2101–2127 (2019)

    Article  Google Scholar 

  48. Brans, J.; Vincke, P.: A preference ranking organisation method: the PROMETHEE method for MCDM. Manag. Sci. 31(6), 647656 (1985)

    Article  Google Scholar 

  49. Venkata Rao, R.; Patel, B.K.: Decision making in the manufacturing environment using an improved PROMETHEE method. Int. J. Prod. Res. 48(16), 4665–4682 (2010)

    Article  MATH  Google Scholar 

  50. Rakhshani, H.; Rahati, A.: Intelligent multiple search strategy cuckoo algorithm for numerical and engineering optimization problems. Arab. J. Sci. Eng. 42(2), 567–593 (2017)

    Article  MATH  Google Scholar 

  51. Araghi, S.; Khosravi, A.; Creighton, D.: Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Exp. Syst. Appl. 42(9), 4422–4431 (2015)

    Article  Google Scholar 

  52. Naumann, D.; Evans, B.; Walton, S.; Hassan, O.: A novel implementation of computational aerodynamic shape optimisation using Modified Cuckoo Search. Appl. Math. Model. 40(7–8), 4543–4559 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Huang, J.; Gao, L.; Li, X.: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Appl. Soft Comput. 36, 349–356 (2015)

    Article  Google Scholar 

  54. Ezilarasan, C.; Velayudham, A.: Theoretical predictions and experimental validations on machining the Nimonic C263 super alloy. Simul. Model. Pract. Theory 40, 192–207 (2014)

    Article  Google Scholar 

  55. Ezilarasan, C.; Velayudham, A.: An experimental analysis and measurement of process performances in machining of Nimonic C-263 super alloy. Measurement 46(1), 185–199 (2013)

    Article  Google Scholar 

  56. Ozgedik, A.; Cogun, C.: An experimental investigation of tool wear in electric discharge machining. Int. J. Adv. Manuf. Technol. 27(5–6), 488–500 (2006)

    Article  Google Scholar 

  57. Prasanna, P.; Sashank, T.V.; Manikanta, B.; Aluri, P.: Optimizing the process parameters of electrical discharge machining on AA7075-SiC alloys. Mater. Today Proc. 4(8), 8517–8527 (2017)

    Article  Google Scholar 

  58. Mohan, B.; Rajadurai, A.; Satyanarayana, K.G.: Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode. J. Mater. Process. Technol. 153, 978–985 (2004)

    Article  Google Scholar 

  59. Pradhan, B.B.; Masanta, M.; Sarkar, B.R.; Bhattacharyya, B.: Investigation of electro-discharge micro-machining of titanium super alloy. Int. J. Adv. Manuf. Technol. 41(11–12), 1094 (2009)

    Article  Google Scholar 

  60. Yan, B.H.; Wang, C.C.: The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode. J. Mater. Process. Technol. 95(1–3), 222–231 (1999)

    Article  Google Scholar 

  61. Manikandan, N.; Raju, R.; Palanisamy, D.; Binoj, J.S.: Optimisation of spark erosion machining process parameters using hybrid grey relational analysis and artificial neural network model. Int. J. Mach. Mach. Mater. 22(1), 1–23 (2020)

    Google Scholar 

  62. Singh, H.: Experimental study of distribution of energy during EDM process for utilization in thermal models. Int. J. Heat Mass Transf. 55(19–20), 5053–5064 (2012)

    Article  Google Scholar 

  63. Ming, W.; Zhang, Z.; Wang, S.; Huang, H.; Zhang, Y.; Zhang, Y.; Shen, D.: Investigating the energy distribution of workpiece and optimizing process parameters during the EDM of Al6061, Inconel 718, and SKD11. Int. J. Adv. Manuf. Technol. 92(9–12), 4039–4056 (2017)

    Article  Google Scholar 

  64. Ming, W.; Shen, F.; Zhang, G.; Liu, G.; Du, J.; Chen, Z.: Green machining: a framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.124889

    Article  Google Scholar 

  65. Sivapirakasam, S.P.; Mathew, J.; Surianarayanan, M.: Multi-attribute decision making for green electrical discharge machining. Expert Syst. Appl. 38(7), 8370–8374 (2011)

    Article  Google Scholar 

  66. Yadav, S.K.: Optimization of Green Electro-Discharge Machining Using VIKOR. Doctoral dissertation (2013)

  67. Benyounis, K.Y.; Olabi, A.G.; Hashmi, M.S.J.: Effect of laser welding parameters on the heat input and weld-bead profile. J. Mater. Process. Technol. 164, 978–985 (2005)

    Article  Google Scholar 

  68. Pandiarajan, S.; Kumaran, S.S.; Kumaraswamidhas, L.A.; Saravanan, R.: Interfacial microstructure and optimization of friction welding by Taguchi and ANOVA method on SA 213 tube to SA 387 tube plate without backing block using an external tool. J. Alloys Compd. 654, 534–545 (2016)

    Article  Google Scholar 

  69. Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

  70. Yang, X.S.; Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

  71. Mohamad, A.B.; Zain, A.M.; NaziraBazin, N.E.: Cuckoo search algorithm for optimization problems—a literature review and its applications. Appl. Artif. Intell. 28(5), 419–448 (2014)

    Article  Google Scholar 

  72. Chiroma, H.; Herawan, T.; Fister Jr., I.; Fister, I.; Abdulkareem, S.; Shuib, L.; Hamza, M.F.; Saadi, Y.; Abubakar, A.: Bio-inspired computation: recent development on the modifications of the cuckoo search algorithm. Appl. Soft Comput. 61, 149–173 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Electronica Pvt. ltd., Pune and CSIR National chemical laboratory for providing resource facility for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmaya P. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shastri, R.K., Mohanty, C.P. Sustainable Electrical Discharge Machining of Nimonic C263 Superalloy. Arab J Sci Eng 46, 7273–7293 (2021). https://doi.org/10.1007/s13369-020-05211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05211-0

Keywords

Navigation