Skip to main content

Advertisement

Log in

Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Lake browning—the increase in catchment-derived (allochthonous) dissolved organic matter (DOM) to lakes—is altering lake physicochemical environments, with consequences for phytoplankton biomass and community composition. We hypothesized that as lakes brown, there will be an increase in phytoplankton biomass and a shift to cyanobacteria-dominated phytoplankton communities as a result of the reduced light availability and increased DOM-bound nutrients (e.g., nitrogen, phosphorus, iron). We tested this hypothesis by sampling temperate lakes in central Ontario (Canada) spanning DOM quantity and quality gradients. We found that lake browning results in larger concentrations of more refractory (i.e., aromatic, high molecular weight) DOM and greater concentrations of nutrients; however, internal nutrient loading was also an important nutrient source in these lakes. We also found that these changes were related to the predominant species in the phytoplankton community. Diatoms dominated in clear oligotrophic lakes. Low levels of lake browning, with concentrations of dissolved organic carbon (DOC) between 4 and 8 mg L− 1, resulted in a shift from diatoms to cyanobacteria. Higher levels of lake browning, with concentrations of DOC between 8 and 12 mg L− 1, resulted in a replacement of cyanobacteria with mixotrophic species. Lake browning appears to fuel phytoplankton chlorophyll-a concentrations while triggering shifts to phytoplankton able to survive if not thrive in progressively browner waters. Lake browning may therefore have consequences on energy transfer through the lower food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Available upon request to the corresponding author.

References

  • Ask J, Karlsson J, Jansson M (2012) Net ecosystem production in clear-water and brown‐water lakes. Glob Biogeochem Cycles 26:GB1017

    Article  CAS  Google Scholar 

  • Bartosiewicz M, Przytulska A, Lapierre JF et al (2019) Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol Oceanogr Lett 4:32–144

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S et al (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Bergström AK, Jansson M, Drakare S, Blomqvist P (2003) Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biol 48:868–877

    Article  Google Scholar 

  • Bergström AK, Karlsson J (2019) Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Glob Change Biol 25:2021–2029

    Article  Google Scholar 

  • Bertilsson S, Jones JB (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp 3–24

    Chapter  Google Scholar 

  • Bishop K, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J (2008) Aqua incognita: the unknown headwaters. Hydro Pro 22:1239–1242

    Article  Google Scholar 

  • Bledsoe EL, Phlips EJ (2000) Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee River and plume region, USA. Estuaries 23:458–473

    Article  Google Scholar 

  • Boyer JN, Kelble CR, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: Chlorophyll-a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol Indic 9:S56–S67

    Article  CAS  Google Scholar 

  • Brothers S, Köhler J, Attermeyer K et al (2014) A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr 59:1388–1398

    Article  CAS  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favor freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    Article  CAS  PubMed  Google Scholar 

  • Chapman LJ, Putnam DF (1973) Physiography of Southern Ontario. Published for the Ontario Research Foundation by University of Toronto Press. 270 p

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Enviro Sci Tech 39:8142–8149

    Article  CAS  Google Scholar 

  • Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH (2008) Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles 22:GB4024. https://doi.org/10.1029/2008GB003294

    Article  CAS  Google Scholar 

  • Creed IF, Bergström AK, Trick CG et al (2018) Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob Change Biol 24:3692–3714

    Article  Google Scholar 

  • Creed IF, Hwang T, Lutz B, Way D (2015) Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest. Hydro Pro 29:3519–3534

    Article  Google Scholar 

  • Creed IF, Sanford SE, Beall FD, Molot LA, Dillon PJ (2003) Cryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapes. Hydro Pro 17:3629–3648

    Article  Google Scholar 

  • Creed IF, Webster KL, Braun GL, Bourbonniere RA, Beall FD (2013) Topographically regulated traps of dissolved organic carbon create hotspots of soil carbon dioxide efflux in forests. Biogeochemistry 112:149–164

    Article  CAS  Google Scholar 

  • Curtis PJ (1993) Effect of dissolved organic carbon on 59Fe scavenging. Limnol Oceanogr 38:1554–1561

    Article  CAS  Google Scholar 

  • De Wit HA, Valinia S, Weyhenmeyer GA et al (2016) Current browning of surface waters will be further promoted by wetter climate. Envir Sci Tech Lett 3:430–435

    Article  CAS  Google Scholar 

  • Deininger A, Faithfull CL, Bergström AK (2017) Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98:982–994

    Article  CAS  PubMed  Google Scholar 

  • Dillon PJ, Kirchner WB (1975) The effects of geology and land use on the export of phosphorus from watersheds. Water Res 9:135–148

    Article  CAS  Google Scholar 

  • Drakare S, Blomqvist P, Bergström AK, Jansson M (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water color and nutrient content. Freshwater Biol 48:729–740

    Article  Google Scholar 

  • Du XL, Creed IF, Sorichetti RJ, Trick CG (2019) Cyanobacteria biomass in shallow eutrophic lakes is linked to the presence of iron-binding ligands. Can J Fish Aquat Sci 76:1728–1739

    Article  CAS  Google Scholar 

  • Dupont J, Clair TA, Gagnon C, Jeffries DS, Kahl JS, Nelson SJ, Peckenham JM (2005) Estimation of critical loads of acidity for lakes in northeastern United States and eastern Canada. Environ Monit Assess 109:275–292

    Article  CAS  PubMed  Google Scholar 

  • Ekvall MK, de la Calle Martin J, Faassen EJ, Gustafsson S, Lürling M, Hansson LA (2013) Synergistic and species-specific effects of climate change and water color on cyanobacterial toxicity and bloom formation. Freshwater Biol 58:2414–2422

    CAS  Google Scholar 

  • Erlandsson M, Cory N, Köhler S, Bishop K (2010) Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. J Geophys Res-Biogeo 115:1–8

    Article  CAS  Google Scholar 

  • ESRI (Environmental Systems Research Institute) (2014) ArcGIS Software, Version 10.2. http://www.esri.com/

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Article  CAS  Google Scholar 

  • Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Phyto Res 22:91–106

    Google Scholar 

  • Findlay S (2003) Bacterial response to variation in dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp 363–379

    Chapter  Google Scholar 

  • Finstad AG, Andersen T, Larsen S et al (2016) From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci Rep 6:31944–31952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman EC, Creed IF, Jones B, Bergström A-K (2020) Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes. Glob Change Biol EarlyView. Doi:https://doi.org/10.1111/gcb.15189

    Article  Google Scholar 

  • Ged EC, Boyer TH (2013) Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter. Chemosphere 91:921–927

    Article  CAS  PubMed  Google Scholar 

  • Gervais F, Padisák J, Koschel R (1997) Do light quality and low nutrient concentration favor picocyanobacterial below the thermocline of the oligotrophic Lake Stechlin? J Plankton Res 19:771–781

    Article  Google Scholar 

  • Houser JN (2006) Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can J Fish Aquat Sci 63:2447–2455

    Article  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JM, Visser PM (2018) Cyanobacterial blooms. Nature Reviews Microbiol 16:471–483

    Article  CAS  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 31 9:83–95

    Article  Google Scholar 

  • Isaksson A, Bergström AK, Blomqvist P, Jansson M (1999) Bacterial grazing by phagotrophic phytoflagellates in a deep humic lake in northern Sweden. J Plankton Res 21:247–268

    Article  Google Scholar 

  • Jansson M, Hickler T, Jonsson A, Karlsson J (2008) Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–376

    Article  CAS  Google Scholar 

  • Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pfl 167:191–194

    Article  CAS  Google Scholar 

  • Jeganathan C, Dash J, Atkinson PM (2014) Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens Environ 143:154–170

    Article  Google Scholar 

  • Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91

    Article  CAS  Google Scholar 

  • Jones RI (1998) Phytoplankton, Primary Production and Nutrient Cycling. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances. Ecological Studies (Analysis and Synthesis), vol 133. Springer, Berlin, pp 145–175

    Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak P, Padisák J, Koschel R, Krienitz L, Gervais F (2008) Chlorophyll-a concentration across a trophic gradient of lakes: An estimator of phytoplankton biomass? Limnologica 38:327–338

    Article  Google Scholar 

  • Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973

    Article  CAS  PubMed  Google Scholar 

  • Kilham P, Kilham SS (1980) The evolutionary ecology of phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, pp 571–597

    Google Scholar 

  • Kirtman B, Power SB, Adedoyin AJ et al (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 953–1028

    Google Scholar 

  • Kissman CE, Williamson CE, Rose KC, Saros JE (2017) Nutrients associated with terrestrial dissolved organic matter drive changes in zooplankton: phytoplankton biomass ratios in an alpine lake. Freshwater Biol 62:40–51

    Article  CAS  Google Scholar 

  • Kritzberg ES, Ekström SM (2012) Increasing iron concentrations in surface waters–a factor behind brownification? Biogeosciences 9:1465–1478

    Article  CAS  Google Scholar 

  • Kritzberg ES (2017) Centennial-long trends of lake browning show major effect of afforestation. Limnology Oceanogr Letters 2:105–112

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Maranger RP, Pullin MJ (2003) Elemental complexation by dissolved organic matter in lakes: Implications for Fe speciation and the speciation and the bioavailability of Fe and P. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, NY, pp 185–214

    Chapter  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  CAS  Google Scholar 

  • McKnight DM, Hood E, Klapper L (2003) Trace organic moieties of dissolved organic material in natural waters. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp 71–96

    Chapter  Google Scholar 

  • Miller MP, McKnight DM, Chapra SC, Williams MW (2009) A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnol Oceanogr 5:2213–2227

    Article  Google Scholar 

  • Mitra A, Flynn KJ, Tillmann U et al (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167:106–120

    Article  CAS  PubMed  Google Scholar 

  • Molot LA, Dillon PJ (2003) Variation in iron, aluminum and dissolved organic carbon mass transfer coefficients in lakes. Water Res 37:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Molot LA, Watson SB, Creed IF et al (2014) A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshwater Biol 59:1323–1340

    Article  CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  CAS  PubMed  Google Scholar 

  • NAFC (North American Forest Commission) (2011) Forests of North America. Available online: http://www.cec.org/tools-and-resources/map-files/north-american-forests-2011

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Commun Ecol Pack 10:631–637

    Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria, their diversity in time and space. Kluwer Academic, Dordrecht, pp 149–194

    Google Scholar 

  • OMNR (Ontario Ministry of Natural Resources) (2011) Ontario Digital Elevation Model, version 2.0.0. Available online: http://geo.scholarsportal.info/#r/details/_uri@=658779033

  • OMNR (Ontario Ministry of Natural Resources) (2013) Wetlands. Available online: https://data.ontario.ca/dataset/wetlands

  • OMNR (Ontario Ministry of Natural Resources) (2015) Bathymetry Index. Available online: https://data.ontario.ca/dataset/bathymetry-index

  • OMNR (Ontario Ministry of Natural Resources) (2018) Ontario Hydro Network (OHN) – Waterbodies. Available online: https://data.ontario.ca/dataset/ontario-hydro-network-waterbody

  • Palmer ME, Yan ND, Paterson AM, Girard RE (2011) Water quality changes in south-central Ontario lakes and the role of local factors in regulating lake response to regional stressors. Can J Fish Aquat Sci 68:1038–1050

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  PubMed  Google Scholar 

  • Pålsson C, Granéli W (2004) Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient. J Plankton Res 26:1005–1014

    Article  CAS  Google Scholar 

  • Perera AH, Euler DL, Thompson ID (eds) (2011) Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario. UBC Press, Vancouver, 346 pp

    Google Scholar 

  • Pilla RM, Williamson CE, Zhang J et al (2018) Browning-related decreases in water transparency lead to long‐term increases in surface water temperature and thermal stratification in two small lakes. J Geophys Res: Biogeosci 123:1651–1665

    Article  Google Scholar 

  • Porcal P, Koprivnja JF, Molot LA, Dillon PJ (2009) Humic substances—part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Enviro Sci Pollut R 16:714–726

    Article  CAS  Google Scholar 

  • Qualls RG, Richardson CJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229

    Article  CAS  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Rosén P, Cunningham L, Vonk J, Karlssona J (2009) Effects of climate on organic carbon and the ratio of planktonic to benthic primary producers in a subarctic lake during the past 45 years. Limnol Oceanogr 54:1723–1732

    Article  Google Scholar 

  • Rstudio Team (2020) Rstudio: Integrated Development for R. Rstudio, Inc., Boston http://www.rstudio.com/

    Google Scholar 

  • SanClements MD, Oelsner GP, McKnight DM, Stoddard JL, Nelson SJ (2012) New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ Sci Tech 46:3212–3219

    Article  CAS  Google Scholar 

  • Seekell DA, Lapierre JF, Karlsson J (2015) Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production. Can J Fish Aquat Sci 72:1663–1671

    Article  CAS  Google Scholar 

  • Senar OE, Creed IF, Strandberg U, Arts MT (2019) Browning reduces the availability—but not the transfer—of essential fatty acids in temperate lakes. Freshwater Biol 64:2107–2119

    Article  CAS  Google Scholar 

  • Senar OE, Webster KL, Creed IF (2018) Catchment-scale shifts in the magnitude and partitioning of carbon export in response to changing hydrologic connectivity in a northern hardwood forest. J Geophys Res-Biogeogr 128:2337–2352

    Article  CAS  Google Scholar 

  • Smith SJ, Edmonds J, Hartin CA, Mundra A, Calvin K (2015) Near-term acceleration in the rate of temperature change. Nat Clim Change 5:333–336

    Article  Google Scholar 

  • Solomon CT, Jones SE, Weidel BC et al (2015) Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18:376–389

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–145

    Article  Google Scholar 

  • Sorichetti RJ, Creed IF, Trick CG (2014a) Evidence for iron-regulated cyanobacterial predominance in oligotrophic lakes. Freshwater Biol 59:679–691

    Article  CAS  Google Scholar 

  • Sorichetti RJ, Creed IF, Trick CG (2014b) The influence of iron, siderophores and refractory DOM on cyanobacterial biomass in oligotrophic lakes. Freshwater Biol 59:1423–1436

    Article  CAS  Google Scholar 

  • Sorichetti RJ, Creed IF, Trick CG (2016) Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshwater Biol 61:146–157

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ, Hessen DO (1992) Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochem 17:49–67

    Article  CAS  Google Scholar 

  • Stoddard JL, Jeffries DS, Lükewille A et al (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  CAS  Google Scholar 

  • Stoddard JL, Van Sickle J, Herlihy AT et al (2016) Continental-scale increase in lake and stream phosphorus: are oligotrophic systems disappearing in the United States? Environ Sci Tech 50:3409–3415

    Article  CAS  Google Scholar 

  • Strock KE, Theodore N, Gawley WG, Ellsworth AC, Saros JE (2017) Increasing dissolved organic carbon concentrations in northern boreal lakes: Implications for lake water transparency and thermal structure. J Geophys Res Biogeosci 122:1022–1035

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  • Taipale SJ, Kahilainen KK, Holtgrieve GW, Peltomaa ET (2018) Simulated eutrophication and browning alter zooplankton nutritional quality and determines juvenile fish growth and survival. Ecol Evol 8:2671–2687

    Article  PubMed  PubMed Central  Google Scholar 

  • Taipale SJ, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Fatty acid composition as biomarkers of freshwater microalgae: Analysis of 37 strains of microalgae in 22 genera and in 7 classes. Aquat Microb Ecol 71:165–178

    Article  Google Scholar 

  • Taipale SJ, Vuorio K, Strandberg U et al (2016) Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ Int 96:156–166

    Article  CAS  PubMed  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydro Pro 5:81–100

    Article  Google Scholar 

  • Thrane JE, Hessen DO, Andersen T (2014) The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems 17:1040–1052

    Article  CAS  Google Scholar 

  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EO, Wiedner C, Mur LR, Huisman J (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trick CG, Kerry A (1992) Isolation and purification of siderophores produced by cyanobacteria, Synechococcus sp. PCC 7942 and Anabaena variabilis ATCC 29413. Curr Microbiol 24:241–245

    Article  CAS  Google Scholar 

  • Urrutia-Cordero P, Ekvall MK, Hansson LA (2016) Local food web management increases resilience and buffers against global change effects on freshwaters. Sci Rep-UK 6:29542

    Article  CAS  Google Scholar 

  • Urrutia-Cordero P, Ekvall MK, Ratcovich J, Soares M, Wilken S, Zhang H, Hansson LA (2017) Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshwater Biol 62:1869–1878

    Google Scholar 

  • Vasconcelos FR, Diehl S, Rodríguez P, Karlsson J, Byström P (2018) Effects of terrestrial organic matter on aquatic primary production as mediated by pelagic–benthic resource fluxes. Ecosystems 21:1255–1268

    Article  Google Scholar 

  • Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl Environ Microbiol 69:1475–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Enviro Sci Tech 37:4702–4708

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: Lake and River Ecosystems. Gulf Professional Publ. 1006 p

  • Weyhenmeyer GA, Prairie YT, Tranvik LJ (2014) Browning of boreal freshwater coupled to carbon-iron interactions along the aquatic continuum. PLoS One 9(2):e88104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickham H, François R, Henry L, Müller K, Rstudio (2020) Dplyr: A Grammar of Data Manipulation. R Package Version 0.8.5, URL https://cran.r-project.org/web/packages/dplyr/index.html

  • Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233

    Article  PubMed  Google Scholar 

  • Wilken S, Soares M, Urrutia-Cordero P, Ratcovich J, Ekvall MK, Van Donk E, Hansson LA (2018) Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol Oceanogr 63:S142–S155

    Article  Google Scholar 

  • Williamson CE, Morris DE, Pace ML, Olson OG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803

    Article  CAS  Google Scholar 

  • Williamson CE, Overholt EP, Pilla EP, Leach RM, Brentrup TH, Knoll JA et al (2015) Ecological consequences of long-term browning in lakes. Sci Rep-UK 5:18666

    Article  CAS  Google Scholar 

  • Williamson CE, Overholt EP, Brentrup JA et al (2016) Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front Ecol Environ 14:102–109

    Article  Google Scholar 

  • Zevenboom W, Van Der Does J, Bruning K, Mur LR (1981) A non-heterocystous mutant of Aphanizomenon flos‐aquae, selected by competition in light‐limited continuous culture. FEMS Microbiol Lett 10:11–16

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by an NSERC Discovery Grants 06579-2014 and 4458-2016 awarded to IFC and CGT, respectively, and an NSERC CREATE ABATE awarded to IFC and CGT (448172-2014). We acknowledge the OMECP Dorset Environmental Sciences Center (DESC) at Dorset, ON and the OMECP Laboratory Services Branch in Toronto, ON for assistance in completing the water analyses.

Funding

This project was funded by Natural Science and Engineering Research Council of Canada (NSERCC) CREATE (448172-2014) and Discovery (06579-2014 RGPIN) grants to IFC.

Author information

Authors and Affiliations

Authors

Contributions

OS, IC and CT collaborated on developing the study rationale, scope, and design. IC provided the facilities and supervision to complete the study. OS collected and analyzed the data. OS, IC and CT collaborated on writing the introduction, methods, results, and discussion of the study.

Corresponding author

Correspondence to Irena F. Creed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senar, O.E., Creed, I.F. & Trick, C.G. Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquat Sci 83, 21 (2021). https://doi.org/10.1007/s00027-021-00780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-021-00780-0

Keywords

Navigation