Skip to main content
Log in

A new filled function method based on adaptive search direction and valley widening for global optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The filled function methods are a kind of effective method to find the global minimum for optimization problems. However, there exist four limitations to this kind of method: 1) A large number of local minima may take a lot of iterations (time and computation cost) for the methods to find the global minimum. 2) The parameters (if any) in the constructed filled function are difficult to adjust and control. 3) It is hard to select a proper initial point. The initial point can affect the effectiveness of the method greatly. 4) The narrow valleys will make the method difficult to find a more superior minimum. To break the limitations, we use a flatten technique to eliminate a number of local minima firstly. Then we design a new continuously filled function without any adjustable parameter. Moreover, we propose an adaptive strategy for determining the initial points by using uniformly distributed search directions. Furthermore, we propose a narrow valley widening strategy which can make it much easier for the filled function method to get a more superior minimum in the narrow valleys. Based on these strategies, we develop a new effective filled function method. 7 widely used benchmark functions are tested and the performance comparison is made between the developed method and two state-of-the-art filled function methods. The experimental results demonstrate that the developed method in this work is more effective than the compared algorithms for solving global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf Ences 540:131–159

    MathSciNet  Google Scholar 

  2. B QAA, B MS, B IY (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 113702:161

    Google Scholar 

  3. El-Gindy TM, Salim MS, Ahmed AI (2016) A new filled function method applied to unconstrained global optimization. Appl Math Comput 273(1):1246–1256

    MathSciNet  MATH  Google Scholar 

  4. Fei W, Wang Y, Lin H (2014) A new filled function method with two parameters for global optimization. J Optim Theory Appl 163(2):510–527

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao Y, Yang Y, You M (2015) A new filled function method for global optimization. Appl Math Comput 268:685–695

    MathSciNet  MATH  Google Scholar 

  6. Ge R (1990) A filled function method for finding a global minimizer of a function of several variables. Math Program 46(2):191–204

    MathSciNet  MATH  Google Scholar 

  7. Ge RP, Qin YF (1987) A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 54(2):241–252

    Article  MathSciNet  MATH  Google Scholar 

  8. Hager WW, Zhang H (2006) Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans Math Softw 32(1):113–137

    Article  MATH  Google Scholar 

  9. Hamidzadeh J, Moradi M (2018) Improved one-class classification using filled function. Appl Intell 48:3263–3279

    Article  Google Scholar 

  10. He S, Chen W, Wang H (2011) A new filled function algorithm for constrained global optimization problems. Appl Math Comput 217:5853–5859

    MathSciNet  MATH  Google Scholar 

  11. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  12. Hemeida AM, Mansour R, Hussein ME (2018) Multilevel thresholding for image segmentation using an improved electromagnetism optimization algorithm. Int J Interact Multimed Artif Intell 5(4):102–112. https://doi.org/10.9781/ijimai.2018.09.001

    Article  Google Scholar 

  13. Kamel S, Youssef H (2019) Voltage stability enhancement based on optimal allocation of shunt compensation devices using lightning attachment procedure optimization. Int J Interact Multimed Artif Intell 5 (7):125–134. https://doi.org/10.9781/ijimai.2019.10.001

    Google Scholar 

  14. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: A new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Article  Google Scholar 

  15. Liang YM, Zhang L, Li M, Han B (2007) A filled function method for global optimization. J Comput Appl Math 205(1):16–31

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin H, Gao Y, Wang Y (2014) A continuously differentiable filled function method for global optimization. Numer Algoritm 66(3):511–523

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin H, Wang Y, Fan L (2011) A filled function method with one parameter for unconstrained global optimization. Appl Math Comput 218(7):3776–3785

    MathSciNet  MATH  Google Scholar 

  18. Lin H, Wang Y, Fan L, Gao Y (2013) A new discrete filled function method for finding global minimizer of the integer programming. Appl Math Comput 219(9):4371–4378

    MathSciNet  MATH  Google Scholar 

  19. Lin H, Yuelin G, Xiaoli W, Shoubao S (2018) A filled function which has the same local minimizer of the objective function. Optim Lett 13:761–776

    Article  MathSciNet  MATH  Google Scholar 

  20. Ling BWK, Wu CZ, Teo KL, Rehbock V (2013) Global optimal design of IIR filters via constraint transcription and filled function methods. Circ Syst Signal Process 32(3):1313–1334

    Article  MathSciNet  Google Scholar 

  21. Liu H, Wang Y, Gao X (2018) A parameter free filled function method for global optimization. Pac J Optim 14(4):567–580

    MathSciNet  MATH  Google Scholar 

  22. Liu H, Wang Y, Guan S (2017) A new filled function method for unconstrained global optimization. Int J Comput Math 94(12):2283–2296

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu J, Wang Y, Wei S, Sui X, Tong W (2019) A filled flatten function method based on basin deepening and adaptive initial point for global optimization. Int J Pattern Recognit Artif Intell, 1–24. https://doi.org/10.1142/S0218001420590119

  24. Liu X (2001) Finding global minima with a computable filled function. J Glob Optim 19 (2):151–161

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu X (2008) A class of continuously differentiable filled functions for global optimization. IEEE Trans Syst Man Cyb Syst Hum 38(1):38–47

    Article  Google Scholar 

  26. Ma S, Yang Y, Liu H (2010) A parameter free filled function for unconstrained global optimization. J Shanghai Univ 215 (10):3610–3619

    MathSciNet  MATH  Google Scholar 

  27. Salim MS, Ahmed AI (2018) A family of quasi-newton methods for unconstrained optimization problems. Optimization, 1–11

  28. Shang Y, sheng Zhang L (2008) Finding discrete global minima with a filled function for integer programming. Eur J Oper Res 189(1):31–40

    Article  MathSciNet  MATH  Google Scholar 

  29. Sui X, Wang Y, Liu J (2019) A new filled function method combining auxiliary function for global optimization. Pac J Optim 15(1):23–44

    MathSciNet  MATH  Google Scholar 

  30. Wan Z, Yuan L, Jiawei C (2012) A filled function method for nonlinear systems of equalities and inequalities. Comput Appl Math 31:391–405

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang C, Yang Y, Jing L (2009) A new filled function method for unconstrained global optimization. J Comput Appl Math 225:68–79

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang W, Shang Y, Zhang L (2007) A filled function method with one parameter for box constrained global optimization. Chin J Eng Math 194(1):54–66

    MathSciNet  MATH  Google Scholar 

  33. Wang Y, Liu D (2006) Global optimization evolutionary algorithm and its convergence based on a smooth scheme and line search. Chin J Comput 29(4):670–675

    MathSciNet  Google Scholar 

  34. Wei F, Wang Y (2013) A new filled function method with one parameter for global optimization. Math Probl Eng 4:601–622

    MathSciNet  Google Scholar 

  35. Wu X, Zhang K, Sun C (2014) Constrained optimal control of switched systems based on modified BFGS algorithm and filled function method. Int J Comput Math 91(8):1713–1729

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang Y, Gao Y (2015) A new filled function method for global optimization. In: IEEE International conference on digital signal processing, IEEE, pp 54–58

  37. Yang Y, Yang Y (2006) A new filled function method for unconstrained global optimization. Appl Math Comput 189:31–40

    MathSciNet  MATH  Google Scholar 

  38. Zhang Y, Zhang L, Xu Y (2009) New filled functions for nonsmooth global optimization. Appl Math Model 33(7):3114–3129

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu C, Byrd Richard H, Lu P et al (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw 23(4):550–560

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NO.61872281) and by the Fundamental Research Funds for the Central Universities and by the Innovation Fund of Xidian University (NO.CS2020-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y. & Fan, N. A new filled function method based on adaptive search direction and valley widening for global optimization. Appl Intell 51, 6234–6254 (2021). https://doi.org/10.1007/s10489-020-02179-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-02179-0

Keywords

Navigation