Skip to main content
Log in

Intrinsic Dimensionality of Microstructure Data

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, we present a simple and unique approach to estimate the intrinsic dimensionality of microstructure data. By using principal component analysis (PCA) and multi-dimensional scaling (MDS), we demonstrate the effects of global and local metrics on various classes of 2D and 3D synthetic two-phase microstructure data on the intrinsic dimensionality (ID). Further, we establish the influence of the phase fraction and the inherent stochastic nature of the microstructure on ID estimation. It is observed that 2-point spatial correlation statistics greatly influence intrinsic dimensionality. A change in the intrinsic dimensionality is observed with an increase in the volume fraction of the phase. Considerable variation is observed in metric values for MDS compared to PCA, with an increase in dimensions. We also provide a reduced-order phase fraction benchmark of intrinsic dimensionality (ID) for high dimensional microstructure data. The presented framework is based on a simple and effective trade-off between property preservation and complexity reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Stress referred here is not to be confused with mechanical stress.

References

  1. Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Progress Mater Sci 55(6):477

    Article  CAS  Google Scholar 

  2. Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW, Liu WK, Chen W (2018) Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 95:1

    Article  CAS  Google Scholar 

  3. Lebensohn R, Rollett A (2020) Spectral methods for full-field micromechanical modelling of polycrystalline materials. Comput Mater Sci 173:109336

    Article  Google Scholar 

  4. Lebensohn R, Castañeda P, Brenner R, Castelnau O (2011) Full-field vs. homogenization methods to predict microstructure–property relations for polycrystalline materials. In: Computational methods for microstructure–property relationships, pp 393–441

  5. Kanjarla A, Lebensohn R, Balogh L, Tomé C (2012) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms. Acta Mater 60(6):3094

    Article  CAS  Google Scholar 

  6. Qidwai SM, Turner DM, Niezgoda SR, Lewis AC, Geltmacher AB, Rowenhorst DJ, Kalidindi SR (2012) Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater 60(13):5284

    Article  CAS  Google Scholar 

  7. Pokharel R, Lind J, Kanjarla AK, Lebensohn RA, Li SF, Kenesei P, Suter RM, Rollett AD (2014) Polycrystal plasticity: comparison between grain - scale observations of deformation and simulations. Annual Rev Condens Matter Phys 5(1):317

    Article  CAS  Google Scholar 

  8. Pinz M, Weber G, Ghosh S (2019) Generating 3d virtual microstructures and statistically equivalent RVES for subgranular gamma-gamma’ microstructures of nickel-based superalloys. Comput Mater Sci 167:198

    Article  CAS  Google Scholar 

  9. Yuan X, Ren D, Wang Z, Guo C (2013) Dimension projection matrix/tree: interactive subspace visual exploration and analysis of high dimensional data. IEEE Trans Vis Comput Gr 19(12):2625

    Article  Google Scholar 

  10. Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integr Mater Manuf Innov 2(1):54

    Article  Google Scholar 

  11. Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387

    Article  CAS  Google Scholar 

  12. Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 56(5):942

    Article  CAS  Google Scholar 

  13. Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34

    Article  CAS  Google Scholar 

  14. Niezgoda S, Fullwood D, Kalidindi S (2008) Delineation of the space of 2-point correlations in a composite material system. Acta Mater 56(18):5285

    Article  CAS  Google Scholar 

  15. Li Z, Wen B, Zabaras N (2010) Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Comput Mater Sci 49(3):568

    Article  CAS  Google Scholar 

  16. Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) An efficient machine learning approach to establish structure–property linkages. Comput Mater Sci 156:17

    Article  Google Scholar 

  17. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1

    Article  Google Scholar 

  18. Samudrala S, Rajan K, Ganapathysubramanian B (2013) Informatics for materials science and engineering. Elsevier, Amsterdam, pp 97–119

    Book  Google Scholar 

  19. Cang R, Xu Y, Chen S, Liu Y, Jiao Y, Yi Ren M (2017) Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J Mech Des 139(7)

  20. Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier, Amsterdam

    Google Scholar 

  21. Van Der Maaten LJP, Postma EO, Van Den Herik HJ (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10:1

    Google Scholar 

  22. Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recogn 36:2945

    Article  Google Scholar 

  23. Campadelli P, Casiraghi E, Ceruti C, Rozza A (2015) Intrinsic dimension estimation: relevant techniques and a benchmark framework. Math Problems Eng 2015:1

    Article  Google Scholar 

  24. Gracia A, González S, Robles V, Menasalvas E (2014) A methodology to compare dimensionality reduction algorithms in terms of loss of quality. Inf Sci 270:1

    Article  Google Scholar 

  25. Hyman JD, Winter LC (2014) Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J Comput Phys 277:16

    Article  Google Scholar 

  26. The Mathworks, Inc., (2018) Natick, Massachusetts, MATLAB version 9.5.0.1298439 (R2018b) Update 7

  27. Cecen A, Fast T, Kalidindi SR (2016) Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure. Integr Mater Manuf Innov 5(1):1

    Article  Google Scholar 

  28. Cecen A, Kalidindi SR (2015) Matlab spatial correlation toolbox: eelease 3:1

  29. Mohd Aris KD, Mustapha F, Salit MS, Majid AA (2014) Condition structural index using principal component analysis for undamaged, damage and repair conditions of carbon fiber-reinforced plastic laminate. J Intell Mater Syst Struct 25(5):575

    Article  Google Scholar 

  30. Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3(1):8

    Article  Google Scholar 

  31. Rajan K, Suh C, Mendez PF (2009) Principal component analysis and dimensional analysis as materials informatics tools to reduce dimensionality in materials science and engineering. Stat Anal Data Min ASA Data Sci J 1(6):361

    Article  Google Scholar 

  32. Shenai PM, Xu Z, Zhao Y (2012) Principal component analysis-engineering applications. IntechOpen, pp 25–40

  33. Cox MA, Cox TF (2008) Handbook of data visualization. Springer, New York, pp 315–347

    Book  Google Scholar 

  34. Thorndike RL (1953) Who belongs in the family? Psychometrika 18:267

    Article  Google Scholar 

  35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825

    Google Scholar 

  36. Lee JA, Verleysen M (2009) Quality assessment of dimensionality reduction: rank-based criteria. Neurocomputing 72(7–9):1431

    Article  Google Scholar 

  37. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  Google Scholar 

  38. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  39. Sumithra V, Surendran S (2015) A review of various linear and non linear dimensionality reduction techniques. Int J Comput Sci Inf Technol 6:2354

    Google Scholar 

  40. van Wezel MC, Kosters WA (2004) Nonmetric multidimensional scaling: neural networks versus traditional techniques. Intell Data Anal 8(6):601

    Article  Google Scholar 

  41. Borg I, Groenen PJ (2005) Modern multidimensional scaling: theory and applications. Springer, New York

    Google Scholar 

  42. Lubbers N, Lookman T, Barros K (2017) Inferring low-dimensional microstructure representations using convolutional neural networks. Phys Rev E 96(5):052111

    Article  Google Scholar 

  43. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2832

    Google Scholar 

  44. De Leeuw J, Mair P (2011) Multidimensional scaling using majorization: SMACOF in R. https://escholarship.org/uc/item/9z64v481

  45. Siegel S, Castellan N (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill international editions statistics series. McGraw-Hill

  46. Venna J, Kaski S (2006) Local multidimensional scaling. Neural Netw 19:889

    Article  Google Scholar 

  47. Chen L, Buja A (2009) Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis. J Am Stat Assoc 104(485):209

    Article  CAS  Google Scholar 

  48. Tenenbaum J, Silva V, Langford J (2012) Geometric structure of high-dimensional data and dimensionality reduction. Science 290(December):151

    Google Scholar 

  49. Handa H (2011) On the effect of dimensionality reduction by manifold learning for evolutionary learning. Evol Syst 2:235

    Article  Google Scholar 

  50. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C 18(5):401

    Article  Google Scholar 

  51. Latypov M, Kalidindi S (2017) Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase materials. J Comput Phys 346:242–261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sanket Thakre gratefully acknowledges the support from the Prime Minister’s Research Fellowship (PMRF) awarded by the Ministry of Human Resource Development, India. The comments from anonymous referee were helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Thakre.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakre, S., Harshith, V. & Kanjarla, A.K. Intrinsic Dimensionality of Microstructure Data. Integr Mater Manuf Innov 10, 44–57 (2021). https://doi.org/10.1007/s40192-021-00200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00200-z

Keywords

Navigation