Skip to main content
Log in

Explicit Gaussian Quadrature Rules for \(C^1\) Cubic Splines with Non-uniform Knot Sequences

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

This paper provides the explicit and optimal quadrature rules for the cubic \(C^1\) spline space, which is the extension of the results in Ait-Haddou et al. (J Comput Appl Math 290:543–552, 2015) for less restricted non-uniform knot values. The rules are optimal in the sense that there exist no other quadrature rules with fewer quadrature points to exactly integrate the functions in the given spline space. The explicit means that the quadrature nodes and weights are derived via an explicit recursive formula. Numerical experiments and the error estimations of the quadrature rules are also presented in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ait-Haddou, R., Barton, M., Calo, V.: Explicit gaussian quadrature rules for \(C^1\) cubic splines with symmetrically stretched knot sequences. J. Comput. Appl. Math. 290, 543–552 (2015)

    Article  MathSciNet  Google Scholar 

  2. Atkinson, K.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations Of the Second-Kind. SIAM, Philadelphia (1989)

    Google Scholar 

  3. Barendrecht, P., Bartoň, M., Kosinka, J.: Efficient quadrature rules for subdivision surfaces in isogeometric analysis. Comput. Methods Appl. Mech. Eng. (2018). https://doi.org/10.1016/j.cma.2018.05.017

    Article  MathSciNet  MATH  Google Scholar 

  4. Barton, M., Calo, V.: Gaussian quadrature for splines via homotopy continuation: Rules for \(C^2\) cubic splines. J. Comput. Appl. Math. 296, 709–723 (2016)

    Article  MathSciNet  Google Scholar 

  5. Barton, M., Calo, V.M.: Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 305, 217–240 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boor, C.D.: On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MathSciNet  Google Scholar 

  7. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  Google Scholar 

  8. Deng, F., Zeng, C., Deng, J.: Boundary-mapping parametrization in isogeometric analysis. Commun. Math. Stat. 4, 203–216 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric Modeling with Splines: An Introduction. A.K. Peters Ltd, Wellesley (2001)

    Book  Google Scholar 

  10. Farin, G., Hoschek, J., Kim, M.: Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  11. Gautschi, W.: Numerical Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  12. Golub, G., Welsch, J.: Calculation of gauss quadrature rules. Math. Comput. 23, 221–230 (1969)

    Article  MathSciNet  Google Scholar 

  13. Hiemstra, R.R., Calabro, F., Schillinger, D., Hughes, T.: Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 966–1004 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)

    Article  MathSciNet  Google Scholar 

  16. Jingjing Zhang, X.L.: On the linear independence and partition of unity of arbitrary degree analysis-suitable t-splines. Commun. Math. Stat. 3, 353–364 (2015)

    Article  MathSciNet  Google Scholar 

  17. Karlin, S., Studden, W.: Tchebycheff systems: with applications in analysis and statistics. Rev. Inst. Int. Stat. 35, 1093 (1967)

    Google Scholar 

  18. Ma, J., Rokhlin, V., Wandzura, S.: Generalized gaussian quadrature rules for systems of arbitrary functions. Siam J. Numer. Anal. 33, 971–996 (1996)

    Article  MathSciNet  Google Scholar 

  19. Micchelli, C., Pinkus, A.: Moment theory for weak chebyshev systems with applications to monosplines, quadrature formulae and best one-sided \(L^1\)-approximation by spline functions with fixed knots. SIAM J. Math. Anal. 8, 206–230 (1977)

    Article  MathSciNet  Google Scholar 

  20. Nikolov, G.: On certain definite quadrature formulae. J. Comput. Appl. Math. 75, 329–343 (1996)

    Article  MathSciNet  Google Scholar 

  21. Nikolov, G., Simian, C.: Approximation and Computation. Springer, New York (2010)

    Google Scholar 

  22. Qarariyah, A., Deng, F., Yang, T., Deng, J.: Numerical solution for schrödinger eigenvalue problem using isogeometric analysis on implicit domains. Commun. Math. Stat. (2019)

  23. Sloan, I.: A quadrature-based approach to improving the collocation method. Numer. Math. 54, 41–56 (1988)

    Article  MathSciNet  Google Scholar 

  24. Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. CRC Press, Balkema (2003)

    Book  Google Scholar 

  25. Xu, G., Kwok, T.H., Wang, C.: Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization. Comput. Aided Des. 91, 1–3 (2017)

    Article  Google Scholar 

  26. Yang, T., Qarariyah, A., Kang, H., Deng, J.: Numerical integration over implicitly defined domains with topological guarantee. Commun. Math. Stat. 7, 459–474 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhang, F., Xu, Y., Chen, F.: Discontinuous galerkin methods for isogeometric analysis for elliptic equations on surfaces. Commun. Math. Stat. 2, 431–461 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NSF of China (No.61872328), NKBRPC (2011CB302400), SRF for ROCS SE and the Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Li, X. Explicit Gaussian Quadrature Rules for \(C^1\) Cubic Splines with Non-uniform Knot Sequences. Commun. Math. Stat. 9, 331–345 (2021). https://doi.org/10.1007/s40304-020-00220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00220-9

Keywords

Mathematics Subject Classification

Navigation