Skip to main content

Advertisement

Log in

Effect of Forming-Die Temperature on Microstructure and Mechanical Properties of AA7075 Alloy During HFQ® Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hot forming quenching-integrated process (HFQ®) has aroused widespread attention as a new stamping technology recently for producing complex-shaped structural parts. Forming-die temperature plays a critical role on tailoring the microstructure and mechanical properties of the final hot formed parts. In this paper, the HFQ® + pre-ageing (PA) + simulated baking (SB) process was used for AA7075 alloy to investigate the changes in microstructure and mechanical properties as a function of forming-die temperature ranging from 25 to 400 °C. The results show that the volume fraction of η′ precipitates drops and part of η′ phase becomes coarsened after HFQ® + PA + SB process with 25–200 °C forming dies, when compared with the base metal. As forming-die temperature ranges from 300 to 400 °C, a large number of η phase can be found. The overall mechanical properties of U-shaped parts were compared under various forming-die temperature. The forming-die temperature of 200 °C was selected where the AA7075 alloy U-shaped parts exhibit good combination of strength and ductility, i.e., the value of PSE being approximately 7534 MPa·%, which suits for the industry production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dursun T, and Soutis C, Mater Des 56 (2014) 862.

    Article  CAS  Google Scholar 

  2. Fan X B, He Z B, Zhou W X, and Yuan S J, J Mater Process Tech 228 (2016) 179.

    Article  CAS  Google Scholar 

  3. Bariani P F, Bruschi S, Ghiotti A, and Michieletto F, CIRP Ann 62 (2013) 251.

    Article  Google Scholar 

  4. Zhou L, Yu M R, Liu B Y, Zhang Z L, Liu S W, Song X G, and Zhao H Y, J Mater Res Technol 9 (2020) 212.

    Article  CAS  Google Scholar 

  5. Chen Y, Li H Y, Wang X Y, Ding H, and Zhang F H, J Mater Eng Perform 29 (2020) 1185.

    Article  CAS  Google Scholar 

  6. Chen Y, Wang H, Wang X Y, Ding H, Zhao J W, Zhang F H, and Ren Z H, Mater Sci Eng A 739 (2019) 272.

    Article  CAS  Google Scholar 

  7. Fan X B, He Z, Yuan S, and Lin P, Mater Sci Eng A 587 (2013) 221.

    Article  CAS  Google Scholar 

  8. Lin J, Dean T A, and Garrett R P, A Process in Forming High Strength and Complex-shaped Al-alloy Sheet Components, British Patent (2008).

  9. El Fakir O, Wang L, Balint D, Dear J P, Lin J, and Dean T A, Int J Mach Tool Manuf 87 (2014) 39.

    Article  Google Scholar 

  10. Zheng K L, Lee J, Xiao W C, Wang B Y, and Lin J G, Met 8 (2018) 231.

    Google Scholar 

  11. Yuan S, Fan X, and He Z, Proc Eng 81 (2014) 1780.

    Article  CAS  Google Scholar 

  12. Li H, Yan Z H, and Cao L Y, Mater Sci Eng A 728 (2018) 88.

    Article  CAS  Google Scholar 

  13. Lee Y S, Hoh D H, Kim H W, and Ahn Y S, Scr Mater 147 (2018) 45.

    Article  CAS  Google Scholar 

  14. Pan H J, Cai M H, Ding H, Huang H S, Zhu B, Wang Y L, and Zhang Y S, Mater Des 134 (2017) s352.

    Article  Google Scholar 

  15. Hu T, Ma K, Topping T D, Schoenung J M, and Lavernia E J, Acta Mater 61 (2013) 2163.

    Article  CAS  Google Scholar 

  16. Cram D G, Zurob H S, Brechet Y J M, and Hutchinson C R, Acta Mater 57 (2009) 5218.

    Article  CAS  Google Scholar 

  17. Sepehrband P, Esmaeili S, Mater Sci Eng A 487 (2008) 309.

    Article  Google Scholar 

  18. Li M H, Yang Y Q, Feng Z Q, Huang B, Luo X, Luo J H, and Ru J G, Trans Nonferrous Met Soc China 24 (2014) 2061.

  19. Zhang Z Q, Yu J H, and He D Y, J Alloys Compd 823 (2020) 153919.

    Article  CAS  Google Scholar 

  20. Liu Q, Chen S C, Gu R Y, Wang W R, and Wei X C, J Mater Eng Perform 27 (2018) 4423.

    Article  CAS  Google Scholar 

  21. Baghbani Barenji A, Eivani A R, Hasheminiasari M, Jafarian H R, and Park N, J Mater Res Technol 9 (2020) 1683.

  22. Liu S D, Zhang X M, and Chen M N, Nonferrous Met Soc China 17 (2007) 787.

    Article  CAS  Google Scholar 

  23. Deschamps A, Brechet Y, Mater Sci Eng A 251 (1998) 200.

    Article  Google Scholar 

  24. Zheng K L, Dong Y C, Zheng J H, Foster A, Lin J G, Dong H S, and Dean T A, Mater Sci Eng A 761 (2019) 138017.

    Article  CAS  Google Scholar 

  25. Liu S D, Zhang X M, and Chen M A, Mater Charact 59 (2008) 53.

    Article  CAS  Google Scholar 

  26. Godard D, Archambault P, Aeby-Gautier E, and Lapasset G, Acta Mater 50 (2002) 2319.

    Article  CAS  Google Scholar 

  27. Kang L, Zhao G, Wang G D, Liu K, and Tian N, Nonferrous Met Soc China 28 (2018) 2162.

    Article  CAS  Google Scholar 

  28. Ogura T, Hirosawa S, and Sato T, Sci Technol Adv Mater 4 (2004) 491.

    Article  Google Scholar 

  29. Mahathaninwonga N, Plookphola T, Wannasina J, and Wisutmethangoonb S, Mater Sci Eng A 532 (2012) 91.

    Article  Google Scholar 

  30. Myhr O R, Grong Ø, and Andersen S J, Acta Mater. 49 (2001) 65.

Download references

Acknowledgements

This work is finacially supported by the Fundamental Research Funds for the Central Universities (No. N180702012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Ding or M. H. Cai.

Ethics declarations

Conflict of interest

I declare that the work described in this manuscript is original research and it has not been published previously. There is no conflict of interest in the submission of the manuscript, and all the authors have approved the publication of this manuscript. HFQ® is a registered trademark of Impression Technologies Limited. Impression Technologies Limited is the sole licensee for the commercialization of the HFQ® technology from Imperial College London.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y.F., Ding, H., Cai, M.H. et al. Effect of Forming-Die Temperature on Microstructure and Mechanical Properties of AA7075 Alloy During HFQ® Process. Trans Indian Inst Met 74, 725–734 (2021). https://doi.org/10.1007/s12666-020-02146-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02146-w

Keywords

Navigation