Skip to main content
Log in

Parallel modeling of wildfires using efficient solvers for ill-conditioned linear systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Numerical simulation of multi-physical processes requires a lot of processor time, especially when solving ill-conditional linear systems arising in fluid dynamics problems. This paper is devoted to the development of efficient parallel methods for such systems for FireStar3D wildfire modeling code. Two alternative approaches are discussed and analyzed, based on the MILU-preconditioned conjugate gradient method and on the algebraic multigrid, respectively. The main difficulties of parallelizing these methods are considered and solutions are presented: in the first case, nested twisted factorization with a staircase pipelining, and in the second, a multicolor technique for a new smoother for strongly anisotropic grids. A novel quasi-geometric interpolation technique is presented for solving the problem of positive off-diagonal matrix entries in the multigrid. The limits of applicability of the methods are determined depending on their flexibility, robustness and parallelization capabilities. The performance comparison demonstrates the superiority of the new methods over the widely used variants of the traditional conjugate gradient method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morvan D, Accary G, Meradji S, Frangieh N, Bessonov O (2018) A 3D physical model to study the behavior of vegetation fires at laboratory scale. Fire Safety J 101:39–53. https://doi.org/10.1016/j.firesaf.2018.08.011

    Article  Google Scholar 

  2. Frangieh N, Morvan D, Meradji S, Accary G, Bessonov O (2018) Numerical simulation of grassland fires behavior using an implicit physical multiphase model. Fire Safety J 102:37–47. https://doi.org/10.1016/j.firesaf.2018.06.004

    Article  Google Scholar 

  3. Saad Y (2000) Iterative methods for sparse linear systems. PWS Publishing, Boston

    Google Scholar 

  4. Shewchuk JR (1994) An introduction to the Conjugate gradient method without the agonizing pain. Carnegie Mellon University, Pittsburgh, School of Computer Science

    Google Scholar 

  5. Bessonov O (2013) Parallelization properties of preconditioners for the Conjugate gradient methods. In: Malyshkin, V (ed.) PaCT 2013. LNCS, vol. 7979, pp. 26–36. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-39958-9_3

  6. Stüben K (1999) Algebraic multigrid (AMG): an introduction with applications. CMD Report 70, GMD – Forschungszentrum Informationstechnik GmbH, Sankt Augustin

  7. Stüben K (2001) A review of algebraic multigrid. J Comput Appl Math 128:281–309. https://doi.org/10.1016/S0377-0427(00)00516-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezina M, Falgout R, MacLachlan S, Manteuffel T, McCormick S, Ruge J (2006) Adaptive algebraic multigrid. SIAM J Sci Comput 27(4):1261–1286. https://doi.org/10.1137/040614402

    Article  MathSciNet  MATH  Google Scholar 

  9. Axelsson O (1986) Analysis of incomplete matrix factorizations as multigrid smoothers for vector and parallel computers. Appl Math Comput 19:3–22. https://doi.org/10.1016/0096-3003(86)90094-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Llorente IM, Melson ND (1998) Robust multigrid smoothers for three dimensional elliptic equations with strong anisotropies. Technical Report 98-37, ICASE

  11. Baker A, Falgout R, Gamblin T, Kolev T, Schulz M, Yang U (2015) Scaling algebraic multigrid solvers: on the road to exascale. In: Bischof C, Hegering HG, Nagel W, Wittum G (eds) Competence in High Performance Computing 2010, pp.215–226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24025-6_18

  12. Rupp K, Weinbub J, Rudolf F, Morhammer A, Grasser T, Jüngel A (2015) A performance comparison of algebraic multigrid preconditioners on CPUs, GPUs, and Xeon Phis. Institute for Microelectronics, TU Wien

  13. Xu J, Zikatanov L (2017) Algebraic Multigrid Methods. Acta Numerica 26:591–721. https://doi.org/10.1017/S0962492917000083

    Article  MathSciNet  MATH  Google Scholar 

  14. Gustafsson I (1978) A class of first order factorization methods. BIT 18:142–156. https://doi.org/10.1007/BF01931691

    Article  MathSciNet  MATH  Google Scholar 

  15. Accary G, Bessonov O, Fougère D, Gavrilov K, Meradji S, Morvan D (2009) Efficient parallelization of the preconditioned Conjugate gradient method. In: Malyshkin, V (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_7

  16. Bessonov O (2015) Highly parallel multigrid solvers for multicore and manycore processors. In: Malyshkin, V (ed.) PaCT 2015. LNCS, vol. 9251, pp. 10–20. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-21909-7_2

  17. Bessonov O, Meradji S (2019) Efficient parallel solvers for the FireStar3D wildfire numerical simulation model. In: Malyshkin, V (ed.) PaCT 2019. LNCS, vol. 11657, pp. 140–150. Springer, Heidelberg. https://doi.org/10.1007/978-3-030-25636-4_11

  18. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, New York

    MATH  Google Scholar 

  19. Versteeg H, Malalasekera W (2007) An introduction to Computational Fluid Dynamics: the Finite method. Prentice Hall, Harlow

    Google Scholar 

  20. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms for fluid flow at all speed. Numer Heat Transfer, Part B 37:103–139. https://doi.org/10.1080/104077900275576

    Article  Google Scholar 

  21. van der Vorst HA (1987) Large tridiagonal and block tridiagonal linear systems on vector and parallel computers. Par Comp 5:45–54. https://doi.org/10.1016/0167-8191(87)90005-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Elizarova T, Chetverushkin B (1992) Implementation of multiprocessor transputer system for computer simulation of computational physics problems. Math Model 4(11):75–100 (in Russian)

    Google Scholar 

  23. Frangieh N, Accary G, Morvan D, Meradji S, Bessonov O (2020) Wildfires front dynamics: 3D structures and intensity at small and large scales. Combust Flame 211:54–67. https://doi.org/10.1016/j.firesaf.2018.08.0110

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian State Assignment under Contract No. AAAA-A20-120011690131-7. Centre de Calcul Intensif d’Aix-Marseille (France) is acknowledged for granting access to its high-performance computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Bessonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonov, O., Meradji, S. Parallel modeling of wildfires using efficient solvers for ill-conditioned linear systems. J Supercomput 77, 9365–9379 (2021). https://doi.org/10.1007/s11227-021-03632-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03632-8

Keywords

Navigation