Skip to main content
Log in

A class of protocols for multi-party quantum private comparison based on traveling mode

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multi-party quantum private comparison (MQPC) enables \(n (n\ge 2)\) parties to compare the equality of their private secrets without leaking them. In this paper, a class of MQPC protocols are proposed based on single-particle states and maximally entangled states. With the help of a semi-honest third party, our protocols can compare the equality of n parties’ private secrets. Our protocol uses single-particle states and a class of maximally entangled states as the information carriers, which means that our protocol has flexibility in the selection of quantum states compared with all previous protocols; after all, each of the previous protocols only uses a specific quantum state. In addition, our protocols adopt traveling mode, which can significantly reduce resource consumption. What is more, the qubit efficiency of each of our protocols can reach 100%, which is much higher than that of all previous MQPC protocols. We show that our protocols are secure against the outside and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, p. 160 (1982)

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Theor. 39(45), 14089–14099 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Chai, G., Cao, Z., Liu, W., et al.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 99(3), 032326 (2019)

    Article  ADS  Google Scholar 

  8. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  11. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  Google Scholar 

  12. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  15. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52(9), 3212–3219 (2013)

    Article  MathSciNet  Google Scholar 

  17. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  18. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  21. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  22. Guo, F.Z., Gao, F., Qin, S.J., Zhang, J., Wen, Q.Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12, 2793–2802 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ji, Z.X., Fan, P.R., Zhang, H.G., et al.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459, 124911 (2020)

    Article  Google Scholar 

  26. Li, C., Chen, X., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Chen, X.B., Dou, Z., Xu, G., et al.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)

    Article  ADS  Google Scholar 

  28. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  Google Scholar 

  30. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ye, C.Q., Ye, T.Y.: Circular Multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    Article  MathSciNet  Google Scholar 

  33. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13, 2343–2352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    Article  ADS  Google Scholar 

  37. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  38. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896 (2006)

    Article  ADS  Google Scholar 

  39. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  40. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1636106, 61671087 and 61962009), the Natural Science Foundation of Beijing Municipality(Grant No. 4182006), and the Fund of the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 123 and 4.

Table 1 The relationship of single particle and unitary operation
Table 2 The relationship of Bell state and unitary operation
Table 3 The relationship of GHZ state and unitary operation
Table 4 Comparison between our protocols and the similar MQPC protocols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chongqiang, Y., Jian, L. & Zheng-wen, C. A class of protocols for multi-party quantum private comparison based on traveling mode. Quantum Inf Process 20, 56 (2021). https://doi.org/10.1007/s11128-020-02986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02986-x

Keywords

Navigation