Skip to main content
Log in

The role of microglia in chronic pain and depression: innocent bystander or culprit?

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Clinical evidence shows that chronic pain and depression often accompany each other, but the underlying pathogenesis of comorbid chronic pain and depression remains mostly undetermined. Biotechnology is gradually revealing the phenotype and function of microglia, with great progress regarding microglia’s role in neurodegeneration, depression, chronic pain, and other conditions. This article summarizes the role of microglia in chronic pain, depression, and comorbidities, which is conducive to finding new targets to treat chronic pain and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASK1:

apoptosis signal-regulating kinase 1

ATP:

adenosine triphosphate

BDNF:

brain-derived neurotrophic factor

CCL2:

C-C motif ligand 2

CCR2:

C-C motif ligand 2 receptor

CSF-1:

colony-stimulating factor 1

HMGB1:

high mobility group box 1

HPA:

hypothalamic–pituitary–adrenal

IL:

interleukin

iNOS:

inducible nitric oxide synthase

JNK:

Jun N-terminal kinase

LPS:

lipopolysaccharide

LTP:

long-term potentiation

MAPK:

mitogen-activated protein kinases

NF-κB:

nuclear factor kappa B

NLRP3:

nod-like receptor protein 3

NMDA:

N-methyl-d-aspartate

NO:

nitric oxide

p-CREB:

phosphorylated cAMP response element-binding protein

PI3K:

phosphoinositide 3-kinase

ROS:

reactive oxygen species

TNF-α:

tumor necrosis factor-α

References

  • Agalave NM, Rudjito R, Farinotti AB, Khoonsari PE, Sandor K, Nomura Y, Szabo-Pardi TA, Urbina CM, Palada V, Price TJ, Harris HE, Burton MD, Kultima K, Svensson CI (2020) Sex-dependent role of microglia in disulfide HMGB1-mediated mechanical hypersensitivity. Pain

  • Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggs S, Trang T, Salter MW (2012) P2X4R+ microglia drive neuropathic pain. Nat Neurosci 15:1068–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier LP, Ase AR, Boué-Grabot E, Séguéla P (2012) P2X4 receptor channels form large noncytolytic pores in resting and activated microglia. Glia 60:728–737

    Article  PubMed  Google Scholar 

  • Bernier LP, Ase AR, Boué-Grabot É, Séguéla P (2013) Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Glia 61:2038–2049

    Article  PubMed  Google Scholar 

  • Berta T, Qadri YJ, Chen G, Ji RR (2016) Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res 95:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M (2014) Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial gene expression in a rat model of depression. Brain Behav Immun 42:147–156

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14:1–18

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Ye T, Xu X, Gao M, Zhang Y, Wang D, Gu Y, Zhu H, Tong L, Lu J, Chen Z, Huang C (2020) Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog Neuro-Psychopharmacol Biol Psychiatry 101:109931

    Article  CAS  Google Scholar 

  • Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598–607

    Article  PubMed  Google Scholar 

  • Chen X, Cheng HG, Huang Y, Liu Z, Luo X (2012) Depression symptoms and chronic pain in the community population in Beijing, China. Psychiatry Res 200:313–317

    Article  PubMed  Google Scholar 

  • Chen G, Luo X, Qadri MY, Berta T, Ji RR (2018a) Sex-dependent glial signaling in pathological pain: distinct roles of spinal microglia and astrocytes. Neurosci Bull 34:98–108

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018b) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100:1292–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona AW, Huang Y, O'Connor JC, Dantzer R, Kelley KW, Popovich PG, Godbout JP (2010) Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation 7:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona AW, Norden DM, Skendelas JP, Huang Y, O'Connor JC, Lawson M, Dantzer R, Kelley KW, Godbout JP (2013) Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX(3)CR1)-deficient mice. Brain Behav Immun 31:134–142

    Article  CAS  PubMed  Google Scholar 

  • Crown ED (2012) The role of mitogen activated protein kinase signaling in microglia and neurons in the initiation and maintenance of chronic pain. Exp Neurol 234:330–339

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Ding Z, Zhang J, Xu W, Guo Q, Zou W, Xiong Y, Weng Y, Yang Y, Chen S, Zhang JM, Song Z (2019) Minocycline relieves depressive-like behaviors in rats with bone cancer pain by inhibiting microglia activation in hippocampus. Anesth Analg 129:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Dai WL, Bao YN, Fan JF, Li SS, Zhao WL, Yu BY, Liu JH (2020) Levo-corydalmine attenuates microglia activation and neuropathic pain by suppressing ASK1-p38 MAPK/NF-κB signaling pathways in rat spinal cord. Reg Anesth Pain Med 45:219–229

    Article  PubMed  Google Scholar 

  • Dantzer R (2012) Depression and inflammation: an intricate relationship. Biol Psychiatry 71:4–5

    Article  PubMed  Google Scholar 

  • Dantzer R, Walker AK (2014) Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm (Vienna Austria : 1996) 121:925–932

    Article  CAS  Google Scholar 

  • Deng SL, Chen JG, Wang F (2020) Microglia: a central player in depression. Curr Med Sci 40:391–400

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X (2020) BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation 17:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus V (2018) A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology 97:120–130

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Zhao Y, Yang T, Song M, Wang C, Yao Y, Fan H (2019) Glucocorticoid-driven NLRP3 inflammasome activation in hippocampal microglia mediates chronic stress-induced depressive-like behaviors. Front Mol Neurosci 12:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin TC, Wohleb ES, Zhang Y, Fogaça M, Hare B, Duman RS (2018) Persistent increase in microglial RAGE contributes to chronic stress-induced priming of depressive-like behavior. Biol Psychiatry 83:50–60

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Tong L, Yang R, Hu W, Xu X, Wang W, Wang P, Lu X, Gao M, Wu Y, Xu X, Zhang Y, Chen Z, Huang C (2018) Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacol 135:223–233

    Article  CAS  Google Scholar 

  • Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  • Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N, Maricos M, Jordan P, Buonfiglioli A, Gielniewski B, Ochocka N, Cömert C, Friedrich C, Artiles LS, Kaminska B, Mertins P, Beule D, Kettenmann H, Wolf SA (2018) Transcriptional and translational differences of microglia from male and female brains. Cell Rep 24:2773–2783.e6

    Article  CAS  PubMed  Google Scholar 

  • Hains BC, Waxman SG (2006) Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 26:4308–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, Biber K (2016) Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 55:126–137

    Article  PubMed  Google Scholar 

  • Hildebrand ME, Xu J, Dedek A, Li Y, Sengar AS, Beggs S, Lombroso PJ, Salter MW (2016) Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep 17:2753–2765

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Xin Y, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Zhen G, HongWei R, YongNan L (2020) The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Neurochem Int 138:104773 https://www.who.int/health-topics/depression#tab=tab_1 WHOWD

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Wang D, Zhang Y, Cai Z, Ye T, Tong L, Xu X, Lu J, Liu F, Lu X, Huang C (2020) Apoptosis-triggered decline in hippocampal microglia mediates adolescent intermittent alcohol exposure-induced depression-like behaviors in mice. Neuropharmacol 170:108054

    Article  CAS  Google Scholar 

  • Innes S, Pariante CM, Borsini A (2019) Microglial-driven changes in synaptic plasticity: a possible role in major depressive disorder. Psychoneuroendocrinology 102:236–247

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19:138–152

    Article  CAS  PubMed  Google Scholar 

  • Jawaid A, Krajewska J, Pawliczak F, Kandra V, Schulz PE (2016) A macro role for microglia in poststroke depression. J Am Geriatr Soc 64:459–461

    Article  PubMed  Google Scholar 

  • Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008) P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28:2892–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K (2011) Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett 504:57–61

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Zhang Z, Fu T, Ji J, Yang J, Gu Z (2019) TNF-α regulates microglial activation via the NF-κB signaling pathway in systemic lupus erythematosus with depression. Int J Biol Macromol 125:892–900

    Article  CAS  PubMed  Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19:699–709

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH, Han JK, Choi M, Kwon YJ, Kim SJ, Yi EH, Shin JC, Cho IH, Kim BH, Jeong Kim S, Ye SK (2017) Dysfunction of microglial STAT3 alleviates depressive behavior via neuron–microglia interactions. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 42:2072–2086

    Article  CAS  Google Scholar 

  • Lago N, Kaufmann FN, Negro-Demontel ML, Alí-Ruiz D, Ghisleni G, Rego N, Arcas-García A, Vitureira N, Jansen K, Souza LM, Silva RA, Lara DR, Pannunzio B, Abin-Carriquiry JA, Amo-Aparicio J, Martin-Otal C, Naya H, McGavern DB, Sayós J, López-Vales R, Kaster MP, Peluffo H (2020) CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proc Natl Acad Sci U S A 117:6651–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T (2017) Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J Neurosci 37:10154–10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BD, Yoo JM, Baek SY, Li FY, Sok DE, Kim MR (2019) 3,3′-Diindolylmethane promotes BDNF and antioxidant enzyme formation via TrkB/Akt pathway activation for neuroprotection against oxidative stress-induced apoptosis in hippocampal neuronal cells. Antioxidants (Basel, Switzerland) 9

  • Leonard BE (2018) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 30:1–16

    Article  PubMed  Google Scholar 

  • Li H, Sagar AP, Kéri S (2018) Translocator protein (18 kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuro-Psychopharmacol Biol Psychiatry 83:1–7

    Article  CAS  Google Scholar 

  • Li J, Wang H, Du C, Jin X, Geng Y, Han B, Ma Q, Li Q, Wang Q, Guo Y, Wang M, Yan B (2020a) hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res Bull 163:109–119

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu T, Chen X, Li L, Feng M, Zhang Y, Wan L, Zhang C, Yao W (2020b) Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J Neuroinflammation 17:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YT, Ro LS, Wang HL, Chen JC (2011) Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J Neuroinflammation 8:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindia JA, McGowan E, Jochnowitz N, Abbadie C (2005) Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain : Off J Am Pain Soc 6:434–438

    Article  CAS  Google Scholar 

  • Liu M, Kay JC, Shen S, Qiao LY (2015) Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. J Neuroinflammation 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, Wei X, Xu T, Xin WJ, Pang RP, Li YY, Qin ZH, Murugan M, Mattson MP, Wu LJ, Liu XG (2017) TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37:871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013a) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416

    Article  CAS  PubMed  Google Scholar 

  • Lu DY, Leung YM, Su KP (2013b) Interferon-α induces nitric oxide synthase expression and haem oxygenase-1 down-regulation in microglia: implications of cellular mechanism of IFN-α-induced depression. Int J Neuropsychopharmacol 16:433–444

    Article  CAS  PubMed  Google Scholar 

  • Malcangio M, Lessmann V (2003) A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci 24:116–121

    Article  CAS  PubMed  Google Scholar 

  • Maletic V, Raison CL (2009) Neurobiology of depression, fibromyalgia and neuropathic pain. Front Biosci (Landmark edition) 14:5291–5338

    Article  CAS  Google Scholar 

  • Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW, Tsuda M, Inoue K (2016) Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 7:12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, Deflorio C, Lauro C, Alboni S, Limatola C, Branchi I, Tremblay ME, Maggi L (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 55:114–125

    Article  CAS  PubMed  Google Scholar 

  • Moriarty O, Tu Y, Sengar AS, Salter MW, Beggs S, Walker SM (2019) Priming of adult incision response by early-life injury: neonatal microglial inhibition has persistent but sexually dimorphic effects in adult rats. J Neurosci 39:3081–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman GJ, Karelina K, Zhang N, Walton JC, Morris JS, Devries AC (2010) Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Mol Psychiatry 15:404–414

    Article  CAS  PubMed  Google Scholar 

  • Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Gu N, Zhou L, Ukpong BE, Murugan M, Gan WB, Wu LJ (2016) Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun 7:12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Flores G, Lévesque SA, Pacheco J, Vaca L, Lacroix S, Pérez-Cornejo P, Arreola J (2015) The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. Biochem Biophys Res Commun 467:484–490

    Article  PubMed  Google Scholar 

  • Radat F, Margot-Duclot A, Attal N (2013) Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: a multicentre cohort study. Eur J Pain (London, England) 17:1547–1557

    CAS  Google Scholar 

  • Reus GZ, de Moura AB, Silva RH, Resende WR, Quevedo J (2018) Resilience dysregulation in major depressive disorder: focus on glutamatergic imbalance and microglial activation. Curr Neuropharmacol 16:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro DE, Müller HK, Elfving B, Eskelund A, Joca SR, Wegener G (2019) Antidepressant-like effect induced by P2X7 receptor blockade in FSL rats is associated with BDNF signalling activation. J Psychopharmacol (Oxford, England) 33:1436–1446

    Article  CAS  Google Scholar 

  • Rudzki L, Maes M (2020) The microbiota-gut-immune-glia (MGIG) axis in major depression. Mol Neurobiol 57:4269–4295

    Article  CAS  PubMed  Google Scholar 

  • Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Sawicki CM, Kim JK, Weber MD, Faw TD, McKim DB, Madalena KM, Lerch JK, Basso DM, Humeidan ML, Godbout JP, Sheridan JF (2019) Microglia promote increased pain behavior through enhanced inflammation in the spinal cord during repeated social defeat stress. J Neurosci 39:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzberg AF (2004) The relationship of chronic pain and depression. J Clin Psychiatry 65(Suppl 12):3–4

    PubMed  Google Scholar 

  • Schomberg D, Olson JK (2012) Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 234:262–270

    Article  CAS  PubMed  Google Scholar 

  • Singhal G, Baune BT (2017) Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci 11:270

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42:151–157

    Article  PubMed  Google Scholar 

  • Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Yu W, Chen S, Gao Z, Xiao B (2018a) Microglia polarization and endoplasmic reticulum stress in chronic social defeat stress induced depression mouse. Neurochem Res 43:985–994

    Article  CAS  PubMed  Google Scholar 

  • Tang MM, Lin WJ, Pan YQ, Li YC (2018b) Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression. Front Cell Neurosci 12:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Liu L, Xu D, Zhang W, Zhang Y, Zhou J, Huang W (2018c) Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun 68:248–260

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Yan M, Wang L, Zhou Y, Wang Z, Xia T, Liu X, Pan R, Chang Q (2020) Homeostasis imbalance of microglia and astrocytes leads to alteration in the metabolites of the kynurenine pathway in LPS-induced depressive-like mice. International journal of molecular sciences 21

  • Tatsumi E, Yamanaka H, Kobayashi K, Yagi H, Sakagami M, Noguchi K (2015) RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63:216–228

    Article  PubMed  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, Xue L, Olmstead MC, De Koninck Y, Evans CJ, Cahill CM (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35:8442–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng Y, Zhang Y, Yue S, Chen H, Qu Y, Wei H, Jia X (2019) Intrathecal injection of bone marrow stromal cells attenuates neuropathic pain via inhibition of P2X(4)R in spinal cord microglia. J Neuroinflammation 16:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Gong Y, Wang P, Hu W, Wang J, Chen Z, Zhang W, Huang C (2017) Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res 42:2698–2711

    Article  CAS  PubMed  Google Scholar 

  • Tozaki-Saitoh H, Tsuda M (2019) Microglia–neuron interactions in the models of neuropathic pain. Biochem Pharmacol 169:113614

    Article  CAS  PubMed  Google Scholar 

  • Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28:4949–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trang T, Beggs S, Salter MW (2012) ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol 234:354–361

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M (2019) Microglia-mediated regulation of neuropathic pain: molecular and cellular mechanisms. Biol Pharm Bull 42:1959–1968

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Beggs S, Salter MW, Inoue K (2013) Microglia and intractable chronic pain. Glia 61:55–61

    Article  PubMed  Google Scholar 

  • Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB (2020) Melatonin reverses the depression-associated behaviour and regulates microglia, fractalkine expression and neurogenesis in adult mice exposed to chronic mild stress. Neuroscience 440:316–336

    Article  CAS  PubMed  Google Scholar 

  • Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A (2016) Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun 55:105–113

    Article  CAS  PubMed  Google Scholar 

  • Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66:80–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Huang X, Pan X, Zhang T, Hou C, Su WJ, Liu LL, Li JM, Wang YX (2020) Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav Immun 88:132–143

    Article  CAS  PubMed  Google Scholar 

  • Winkler Z, Kuti D, Ferenczi S, Gulyás K, Polyák Á, Kovács KJ (2017) Impaired microglia fractalkine signaling affects stress reaction and coping style in mice. Behav Brain Res 334:119–128

    Article  CAS  PubMed  Google Scholar 

  • Wohleb ES, Terwilliger R, Duman CH, Duman RS (2018) Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biol Psychiatry 83:38–49

    Article  CAS  PubMed  Google Scholar 

  • Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Zhang G, Zhao C, Yang Y, Miao Z, Xu X (2020) Interleukin-18 from neurons and microglia mediates depressive behaviors in mice with post-stroke depression. Brain Behav Immun 88:411–420

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Liang Y, Ding T, Chu H (2019) PI3K/Akt signaling pathway may be involved in MCP-1-induced P2X4R expression in cultured microglia and cancer-induced bone pain rats. Neurosci Lett 701:100–105

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li H, Li TT, Luo H, Gu XY, Lü N, Ji RR, Zhang YQ (2015) Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci 35:7950–7963

    Article  CAS  PubMed  Google Scholar 

  • Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Malik A, Choi HB, Ko RW, Dissing-Olesen L, MacVicar BA (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82:195–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, Zhang L, Mo L, Li Y, Jiang W, You Z (2020) Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia 68:2674–2692

    Article  PubMed  Google Scholar 

  • Zhong Y, Huang YL, Hu YM, Zhu LR, Zhao YS (2018) Puerarin alleviate radicular pain from lumbar disc herniation by inhibiting ERK-dependent spinal microglia activation. Neuropeptides 72:30–37

    Article  CAS  PubMed  Google Scholar 

  • Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, Mai CL, Lin ZJ, Liu Y, Murugan M, Eyo UB, Umpierre AD, Xin WJ, Chen T, Li M, Wang H, Richardson JR, Tan Z, Liu XG, Wu LJ (2019) Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep 27:3844–3859.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Chen S, Xie W, Guo X, Zhao J (2020) Microglia polarization of hippocampus is involved in the mechanism of Apelin-13 ameliorating chronic water immersion restraint stress-induced depression-like behavior in rats. Neuropeptides 81:102006

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Xu J, Lin Y, Ju P, Duan D, Luo Y, Ding W, Huang S, Chen J, Cui D (2018) Loss of microglia and impaired brain-neurotrophic factor signaling pathway in a comorbid model of chronic pain and depression. Front Psychiatry 9:442

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimin Hu or Xiaolin Xu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, N., Yan, E., Duan, W. et al. The role of microglia in chronic pain and depression: innocent bystander or culprit?. Psychopharmacology 238, 949–958 (2021). https://doi.org/10.1007/s00213-021-05780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05780-4

Keywords

Navigation