Skip to main content

Advertisement

Log in

Electrospun SnO2 and its composite V2O5 nanofibers for thermoelectric power generator

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanofibers have attracted attention in the field of thermoelectric (TE) because of their remarkable properties; abundance, lightweight with the high-surface area-to-volume ratio, low thermal conductivity, mechanically stable, and non-toxic. In applications, like TE wearable device for energy harvesting, development of new composite nanofibers holds more significant potential with the targeted specifications. In our research, we have investigated for the first-time fiber nanocomposites for the application of wearable power generator in terms of TE energy. The electrospun technique attracts in the development of nanostructured materials in the field of thermoelectric power generation. The significance of this paper is to flourish the wearable device materials of 1D vanadium oxide/tin oxide (V2O5/SnO2) composite nanofibers synthesized using sol–gel method followed by electrospinning process. The structural and morphology properties of SnO2 fibers belong to tetragonal structure and nanocomposite relates to tetragonal (SnO2) and orthorhombic (V2O5) structure, diameter in the range of 100–400 nm. The high-surface area to volume ratio of nanofiber allowed more significant phonon scattering and enhance the efficiency. The nanofiber exhibits the outstanding TE properties of the Seebeck coefficient and power factor of 20–100 V/K and 0.3–1.6 µW/K2m at room temperature to 400 K, which is the highest among the fiber SnO2 and its composites. The nanofibers integration on wearable devices paves the way towards ultralight, thermally stable, tunable density and mechanically flexibile are unique, where nanocomposite offers a new opportunity to thermoelectric applications.

Schematic representation of fabrication process PVA-SnO2 NFs and PVA-V2O5/SnO2 NCF.

Highlights

  • Fabrication of 1D nanofibers, which increases phonon scattering and enhanced power factor.

  • The electrospun PVA-SnO2 and PVA-V2O5/SnO2 nanocomposites fiber for the first time was reported as a better thermoelectric material.

  • The exceptional power factor of 0.3 to 1.6 μW/K2m at room temperature to 400 K, which is the top-notch among the fiber SnO2 and its composites.

  • SnO2 composite nanofibers such integration paves the way towards ultralight, tunable density, thermally, and mechanically stable thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veluswamy P, Sathiyamoorthy S, Chowdary K, Muthusamy O, Krishnamoorthy K, Takeuchi T, Ikeda H (2017) Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach. J Alloy Compd 695:888–894

    Article  CAS  Google Scholar 

  2. Choi H, Kim YJ, Song J, Kim CS, Lee GS, Kim S, Park J, Yim SH, Park SH, Hwang HR, Hong MH, Veluswamy P, Cho BJ (2019) UV‐curable silver electrode for screen‐printed thermoelectric generator. Adv Funct Mater 29:1901505

    Article  Google Scholar 

  3. Zhang X, Zhao LD (2015) Thermoelectric materials: energy conversion between heat and electricity. J Materiomics 1:92–105

    Article  Google Scholar 

  4. Agari Y, Ueda A, Omura Y, Nagai S (1997) Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38:801–807

    Article  CAS  Google Scholar 

  5. Ju H, Park D, Kim J (2017) Hydrothermal transformation of SnSe crystal to Se nanorods in oxalic acid solution and the outstanding thermoelectric power factor of Se/SnSe composite. Sci Rep 7:18051

    Article  Google Scholar 

  6. Dalola S, Faglia G, Comini E, Ferroni M, Soldano C, Zappa D, Ferrari V, Sberveglieri G (2011) Seebeck effect in ZnO nanowires for micropower generation. Procedia Eng 25:1481–1484

    Article  CAS  Google Scholar 

  7. Soni A, Yanyuan Z, Ligen Yu, Aik MKK, Dresselhaus MS, Xiong Q (2012) Enhanced thermoelectric properties of solution grown Bi2Te3–xSexNanoplatelet composites. Nano Lett 12:1203–1209

    Article  CAS  Google Scholar 

  8. Sharma J, Lizu M, Stewart M, Zygula K, Lu K, Chauhan R, Yan X, Guo Z, Wujcik EK, Wei S (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7:186–219

    Article  Google Scholar 

  9. Malliakas CD, Chung DY, Claus H, Kanatzidis MG (2016) Superconductivity in the narrow gap semiconductor RbBi11/3Te6. J Am Chem Soc 138:14694–14698

    Article  CAS  Google Scholar 

  10. Iordanidis L, Bilc D, Mahanti SD, Kanatzidis MG (2003) Impressive structural diversity and polymorphism in the modular compounds ABi3Q5(A = Rb, Cs; Q = S, Se, Te). J Am Chem Soc 125:13741–13752

    Article  CAS  Google Scholar 

  11. Xu B, Zhang J, Yu G, Ma S, Wang Y, Wang Y (2018) Thermoelectric properties of monolayer Sb2Te3. J Appl Phys 124:165104

    Article  Google Scholar 

  12. Wang X, Wang H, Xiang B, Fu LW, Zhu H, Chai D, Zhu B, Yu Y, Gao N, Huang ZY, Zu FQ (2018) Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. Appl Mater Interfaces 10:23277–23284

    Article  CAS  Google Scholar 

  13. Vieira EMF, Figueira J, Pires AL, Grilo J, Silva MF, Pereira AM, Goncalves LM (2019) Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloy Compd 774:1102–1116

    Article  CAS  Google Scholar 

  14. Madelung O (1996) Semiconductors basic data. 2nd ed. Springer-Verlag: Berlin, Germany

  15. Lopez R, Boatner LA, Haynes TE, Feldman LC, Haglund Jr RF (2002) Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix. J Appl Phys 92:4031–4036

    Article  CAS  Google Scholar 

  16. Ishiguro K, Sasaki T, Arai T, Imai I (1958) Optical and electrical properties of tin oxide films. J Phys Soc Jpn 13:296–304

    Article  CAS  Google Scholar 

  17. Charnock H, Yeo SA (1959) Thermoelectric e.m.f. of tin-cadmium alloys. J Sci Instrum 36:478–479

    Article  Google Scholar 

  18. Nasirov YN, Feiziev YS (1967) Effect of small substitutions of tin by neodymium on thermoelectric properties of SnTe. Phys Stat Sol 24:K157–K159

    Article  CAS  Google Scholar 

  19. Liu W, Kim HK, Chen S, Jie Q, Lv B, Yao M, Ren Z, Opeil CP, Wilson S, Chu CW, Ren Z (2015) In this issue. Proc Natl Acad Sci USA 112:1–2

    Article  Google Scholar 

  20. Kadir RA, Zhenyu L, Sadek AZ, Rani RA, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Zadeh KK (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118:3129–3139

    Article  Google Scholar 

  21. Mali SS, Patil JV, Kim H, Hong CK (2018) Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale 10:8275–8284

    Article  CAS  Google Scholar 

  22. Xia X, Dong XJ, Wei QF, Cai YB, Lu KY (2012) Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. EXPRESS Polym Lett 6:169–176

    Article  CAS  Google Scholar 

  23. Byun JH, Katoch A, Choi SW, Kim JH, Kim SS (2014) A novel synthesis route for Pt-loaded SnO2 nanofibers and their sensing properties. J Nanosci Nanotechnol 14:8253–8257

    Article  CAS  Google Scholar 

  24. Gong J, Qiao H, Sigdel S, Elbohy H, Adhikari N, Zhou Z, Sumathy V, Wei Q, Qiao Q (2015) Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells. AIP Adv 5:067134

    Article  Google Scholar 

  25. Choi SW, Park JY, Kim SS (2009) Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 20:465603

    Article  Google Scholar 

  26. Li X, Ji Y, Huang JS, Li J, Huang J (2017) Microtubular SnO2/V2O5 composites derived from cellulose substance as cathode materials of lithium-ion batteries. Chem Select 2:7987

    CAS  Google Scholar 

  27. Subramaniam MP, Arunachalam G, Kandasamy R, Veluswamy P, Hiroya I (2018) Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method. J Mater Sci Mater Electron 29:658–666

    Article  CAS  Google Scholar 

  28. Subramaniam MP, Arunachalam G, Kandasamy R (2018) Studies on the structural, morphological and optical properties of HCl assisted vanadium oxide/tin oxide nanocomposites prepared by sol-gel method. Appl Sur Sci 449:610–616

    Article  CAS  Google Scholar 

  29. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    Article  CAS  Google Scholar 

  30. Prakash MBN, Manjunath A, Somashekar R (2013) Studies on AC Electrical conductivity of CdCl2 doped PVA polymer electrolyte. Adv Cond Matter Phys 2013:6

    Google Scholar 

  31. Reddy AB, Manjula B, Jayaramudu T, Sadiku ER, Babu PA, Selvam SP (2016) 5-fluorouracil loaded chitosan–PVA/Na+MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett 8:260–269

    Article  CAS  Google Scholar 

  32. Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y (2004) Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20:214–218

    Article  CAS  Google Scholar 

  33. Horzum N, Mari M, Wagner M, Fortunato G, Popa AM, Demir MM, Landfester K, Crespy D, Espi RM (2015) Controlled surface mineralization of metal oxides on nanofibers. RSC Adv 5:37340–37345

    Article  CAS  Google Scholar 

  34. Ray SS, Chen SS, Li CW, Nguyen NC, Nguyen HT (2016) A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv 6:85495–85514

    Article  CAS  Google Scholar 

  35. Haider S, Zeghayer YA, Ali FAA, Haider A, Mahmood A, Masry WAA, Imran M, Aijaz MO (2013) Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res 20:105

    Article  Google Scholar 

  36. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  37. Zhang L, Ge S, Zuo Y, Zhang B, Xi L (2010) Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures. J Phys Chem C 114:7541–7547

    Article  CAS  Google Scholar 

  38. Yan L, Pan JS, Ong CK (2006) XPS studies of room temperature magnetic Co-doped SnO2 deposited on Si. Mater Sci Eng B 128:34–36

    Article  CAS  Google Scholar 

  39. Akhter S, Allan K, Buchanan D, Cook JA, Campion A, White JM (1988) XPS and IR study of X-ray induced degradation of PVA polymer film. Appl Sur Sci 35:241–258

    Article  CAS  Google Scholar 

  40. Suematsu K, Kodama K, Ma N, Yuasa M, Kida T, Shimano K (2016) Role of vanadium oxide and palladium multiple loading on the sensitivity and recovery kinetics of tin dioxide based gas sensors. RSC Adv 6:5169–5176

    Article  CAS  Google Scholar 

  41. Ahsan M, Ahmad MZ, Tesfamichael T, Bell J, Wlodarski W, Motta N (2012) Low temperature response of nanostructured tungsten oxide thin films toward hydrogen and ethanol. Sens Actuat B 173:789–796

    Article  CAS  Google Scholar 

  42. Mahan GD (2016) Introduction to thermoelectrics. APL Mater 4:104806

    Article  Google Scholar 

  43. Dong X, Gan Y, Peng S, Dong L, Wang Y (2013) Enhanced thermoelectric properties of WO3 by adding SnO2. J Mater Sci: Mater Electron 24:4494

    CAS  Google Scholar 

  44. Ferreira M, Loureiro J, Nogueira A, Rodrigues A, Martins R, Ferreira I (2015) SnO2 thin film oxides produced by RF sputtering for transparent thermoelectric devices. Mater Today Proc 2:647

    Article  Google Scholar 

  45. Tervo J, Manninen A, Ilola R, Hanninen H (2009) State-of-the-art of thermoelectric materials processing, properties and applications. VTT, Finland 124:1

  46. Uyar T, Besenbacher F (2008) Electrospinning of uniform polystyrene fibers: the effect of solvent conductivity. Polymer 49:5336–5343

    Article  CAS  Google Scholar 

  47. Morad M, Fadlallah MM, Hassan MA, Sheha E (2016) Evaluation of the effect of V2O5on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite. Mater Res Express 3:035015

    Article  Google Scholar 

Download references

Acknowledgements

MPS delightedly acknowledges Council of Scientific and Industrial Research, Government of India, New Delhi, India for financial support through [CSIR-HRDG No. 09/1045 (0019) 2K18 EMR I]. BJC acknowledges a research grant from the National Research Foundation of Korea funded by the Korean government (MSIP) (NRF-2015R1A5A1036133). We also thank sincerely to SRM IST, Kattankulathur and gratefully acknowledge Prof. C. Muthamizhchelvan, Director E&T, Prof. D. John Thiruvadigal, Dean Sciences and Dr. C. Preferencial Kala, Head, Physics and Nanotechnology, SRM IST for the extended facilities created under (DST-FIST SR/FST/PSI-155/2010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pandiyarasan Veluswamy or Byung Jin Cho.

Ethics declarations

Conflict of interest

The authors declare that thay have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, M.P., Veluswamy, P., Satheesh, A. et al. Electrospun SnO2 and its composite V2O5 nanofibers for thermoelectric power generator. J Sol-Gel Sci Technol 98, 183–192 (2021). https://doi.org/10.1007/s10971-020-05443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05443-4

Keywords

Navigation