Skip to main content
Log in

Facile fabrication and characterization of nanostructured Y:CdO thin films

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cadmium oxide (CdO) thin films doped with different yttrium (Y) concentrations have been prepared by the cost-effective spin coating technique. The effect of Y doping on structural, morphological, linear, and nonlinear optical properties of the as-prepared CdO thin films is studied. The AFM morphology of the thin films revealed grain size increase with the increase in the percentage of Y doping. From the optical properties, it is found that the films are highly transparent and the optical band gap spreads over the range of 2.3–2.8 eV. The Y doping drastically suppresses the linear and nonlinear optical properties.

Highlights

  • Yttrium (Y)-doped CdO nanostructured thin films have been prepared by the cost-effective spin-coating technique.

  • AFM morphology reveals the grain size with increase in percentage of Y doping.

  • Optical band gap spreads over the range of 2.3–2.8 eV while optical properties get suppressed with Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  2. Shokri KH, Yun JH, Paik Y, Kim J, Anderson WA, Kim SJ (2016) Plasmon field effect transistor for plasmon to electric conversion and amplification. Nano Lett 16:250–254

    Article  Google Scholar 

  3. Krishnamoorthy S (2015) Nanostructured sensors for biomedical applications—a current perspective. Cur Opin Biotech 34:118–124

    Article  CAS  Google Scholar 

  4. Saha B, Das S, Chattopadhyay KK (2007) Electrical and optical properties of Al doped cadmium oxide thin films deposited by radio frequency magnetron sputtering. Sol Energy Mater Sol Cells 91:1692–1697

    Article  CAS  Google Scholar 

  5. Champness CH, Xu Z (1998) Effect of CdO interlayer on electrical characteristics in Se-Bi diodes. Appl Surf Sci 123–124:485–489

    Article  Google Scholar 

  6. Ramakrishna Reddy KT, Shanthini GM, Johnston D, Miles RW (2003) Highly transparent and conducting CdO films grown by chemical spray pyrolysis. Thin Solid Films 427:397–400

    Article  CAS  Google Scholar 

  7. Kondo R, Okimura H, Sakai Y (1971) Electrical properties of semiconductor photodiodes with semitransparent films. Jpn J Appl Phys 10:1547

    Article  CAS  Google Scholar 

  8. Liu X, Xu Z, Shen Y (1997) High performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials. Proc Int Conf Solid Sens Act 1:585–588

    CAS  Google Scholar 

  9. Fu S, Zhang X, Han Q, Liu S, Han X, Liu Y (2016) Blu-ray-sensitive localized surface plasmon resoance for high-density optical memory. Sci Rep 6:36701

    Article  CAS  Google Scholar 

  10. Badeker K (1907) Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds. Ann Phys 22:749–766

    Google Scholar 

  11. Peng F, Liu Q, Fu H, Yang X (2008) First-principles calculations on phase transition and elasticity of CdO under pressure. Solid State Commun 148:6–9

    Article  CAS  Google Scholar 

  12. Haul R, Just D (1962) Disorder and oxygen transport in cadmium oxide. J Appl Phys 33:487–493

    Article  CAS  Google Scholar 

  13. Lakshmanan TK (1963) Optical and electrical properties of semiconducting cadmium oxide films. J Electrochem Soc 110:548–551

    Article  CAS  Google Scholar 

  14. Dou Y, Egdell RG (1996) n-type doping in Cd2SnO4: a study by EELS and photoemission. Phys Rev B 53:15405

    Article  CAS  Google Scholar 

  15. Finkenrath H, Ortenberg V (1967) Effect of sintering temperature on the density and mobility of conduction electrons in cadmium oxide(Exponential sintering temperature dependence of conduction electrons density and attendant decrease of mobility due to ionized impurity scattering in cadmium oxide). Z Angew Math Phys 22:279–281

    CAS  Google Scholar 

  16. Koffyberg FP (1969) Carrier concentration in oxygen deficient CdO single crystals. Phys Lett A 30:37–38

    Article  CAS  Google Scholar 

  17. Berggren KF, Sernelius BE (1981) Band-gap narrowing in heavily doped many-valley semiconductors. Phys Rev B 24:1971

    Article  CAS  Google Scholar 

  18. Dou Y, Egdell RG, Walker T, Law DSL, Beamson G (1998) N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy. Surf Sci 398:241–258

    Article  CAS  Google Scholar 

  19. Kelley KP, Sachet E, Shelton CT, Maria JP (2017) High mobility yttrium doped cadmium oxide thin films. APL Mater 5:076105

    Article  Google Scholar 

  20. Ahmed S, Sarker MSI, Rahman MM, Kamruzzaman M, Khan MKR (2018) Effect of yttrium (Y) on structural, morphological and transport properties of CdO thin films prepared by spray pyrolysis technique. Heliyon 4:e00740

    Article  CAS  Google Scholar 

  21. Xie M, Zhu W, Yu KM, Zhu Z, Wang G (2019) Effects of doping and rapid thermal processing in Y doped CdO thin films. J Alloy Compd 776:259–265

    Article  CAS  Google Scholar 

  22. Tombak A, Baturay S, Kilicoglu T, Ocak YS (2017) Optical, electrical, and morphological effects of yttrium doping of cadmium oxide thin films grown by ultrasonic spray pyrolysis. J Electron Mater 46:2090–2096

    Article  CAS  Google Scholar 

  23. Yang Y, Jin S, Medvedeva JE, Ireland JR, Metz AW, Ni J, Hersam MC, Freeman AJ, Marks TJ (2005) CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. J Am Chem Soc 127:8796–8804

    Article  CAS  Google Scholar 

  24. Saha S, Diroll BT, Shank J, Kudyshev Z, Dutta A, Chowdhury SN, Luk TS, Campione S, Schaller RD, Shalaev VM, Boltasseva A, Wood MG (2019) Broadband, high-speed, and large-amplitude dynamic optical switching with yttrium-doped cadmium oxide. Adv Funct Mater 30:1908377

  25. Thirumoorthi M, Prakash JTJ (2015) Structural, optical and electrical properties of nano-structure CdO:Y thin films by sol-gel spin coating method. Int J Adv Sci Res Dev 2:17–26

    Google Scholar 

  26. Ganesh V, Shkir M, AlFaify S, Yahia IS, Zahran H, El-Rehim AA (2017) Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J Mol Struct 1150:523–530

    Article  CAS  Google Scholar 

  27. Ganesh V, Manthrammel, Shkir MA, AlFaify S (2019) Investigation on physical properties of CdO thin films affected by Tb doping for optoelectronics. Appl Phys A 125:249–258.

    Article  Google Scholar 

  28. AlFaify S, Ganesh V, Haritha L, Shkir M (2019) An effect of La doping on physical properties of CdO films facilely casted by spin coater for optoelectronic applications. Phys B 562:135–140

    Article  CAS  Google Scholar 

  29. Ravikumar M, Chandramohan R, Kumar KDA, Valanarasu S, Kathalingam A, Ganesh V, Shkir M, AlFaify S, Algarni H (2018) Effect of Pr3+ doping on key properties of CdO thin films deposited by spray pyrolysis using perfume atomizer. J Phys Chem Solids 118:211–220

    Article  CAS  Google Scholar 

  30. Kumaravel R, Ramamurthi K, Krishnakumar V (2010) Effect of indium doping in CdO thin films prepared by spray pyrolysis technique. J Phys Chem Solids 71:1545–1549

    Article  CAS  Google Scholar 

  31. Sakthivel P, Asaithambi S, Karuppaiah M, Sheikfareed S, Yuvakkumar R, Ravi G (2019) Different rare earth (Sm, La, Nd) doped magnetron sputtered CdO thin films for optoelectronic applications. J Mater Sci Mater Electron 30:9999–10012

    Article  CAS  Google Scholar 

  32. Saha B, Thapa R, Chattopadhyay KK (2008) Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique. Solid State Commun 145:33–37

    Article  CAS  Google Scholar 

  33. Leon GLR, Cayente RJJ, Peza TJM, Barrera CE, Martinez FJC, Ortega LM (2006) Some physical properties of Sn-doped CdO thin films prepared by chemical bath deposition. Mater Lett 60:3866–3870

    Article  Google Scholar 

  34. Yun Y, Ma Y, Tao S, Xing W, Chen Y, Su T, Yuan W, Wei J, Lin X, Niu Q, Xie XC, Han W (2017) Observation of long phase-coherence length in epitaxial La-doped CdO thin films. Phys Rev B 96:245310

    Article  Google Scholar 

  35. Biju Z, Wen H (2013) Influence of substrate temperature on the structural and properties of In-doped CdO films prepared by PLD. J Semicond 34:053003

    Article  Google Scholar 

  36. Gupta RK, Ghosh K, Patel R, Kahol PK (2009) Highly conducting and transparent Ti-doped CdO films by pulsed laser deposition. Appl Surf Sci 255:6252–6255

    Article  CAS  Google Scholar 

  37. Wongcharoena N, Gaewdanga T, Wongcharoen T (2012) Electrical properties of Al-doped CdO thin films prepared by thermal evaporation in vacuum. Energy Procedia 15:361–370

    Article  Google Scholar 

  38. Helen SJ, Devadason S, Mahalingam T (2016) Improved physical properties of spray pyrolysed Al: CdO nanocrystalline thin films. J Mater Sci Mater Electron 27:4426–4432

    Article  CAS  Google Scholar 

  39. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:10244

    Article  CAS  Google Scholar 

  40. Kim CB, Su CB (2004) Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter. Meas Sci Technol 15:1683–1686

    Article  CAS  Google Scholar 

  41. Frumar M, Jedelský J, Frumarova B, Wagner T, Hrdlička M (2003) Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non-Cryst Solids 326:399–404

    Article  Google Scholar 

  42. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater 4:381–386

    CAS  Google Scholar 

  43. Ganesh V, Yahia I, AlFaify S, Shkir M (2017) Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J Phys Chem Solids 100:115–125

    Article  CAS  Google Scholar 

  44. Wang CC (1970) Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys Rev B 2:2045

    Article  Google Scholar 

  45. Wynne J (1972) Nonlinear optical spectroscopy of χ(3) in LiNbO3. Phys Rev Lett 29:650

    Article  CAS  Google Scholar 

  46. Hanna D (1988) Handbook of laser science and technology. J Mod Opt 35:12–13. https://doi.org/10.1080/09500348814550071

  47. Ganesh V, AlFaify S (2019) Linear and nonlinear optical properties of sol-gel spin coated erbium-doped CdO thin films. Phys B Condens Mater 570:58–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.2/84/41.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ganesh or Yugandhar Bitla.

Ethics declarations

Conflict of interest

The authurs declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, V., Bitla, Y., Haritha, L. et al. Facile fabrication and characterization of nanostructured Y:CdO thin films. J Sol-Gel Sci Technol 97, 697–705 (2021). https://doi.org/10.1007/s10971-021-05471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05471-8

Keywords

Navigation