Skip to main content
Log in

Effect of the Austenitization Route on the Bainitic Reaction Kinetics and Tensile Properties of an Alloyed Austempered Ductile Iron

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effect of the austenitization route on the bainitic reaction kinetics of an alloyed (3.2C–2.8Si–1.8Ni–1.4Cu–0.4Mn–0.2Mo–0.1Cr) austempered ductile iron was studied. Two-step, conventional and rapid austenitization heat treatments were employed to produce different austenite grains sizes (94, 39, and 15 μm, respectively) and, in one case, secondary graphite precipitation. The overall bainitic transformation kinetic at 350 °C was described using the Johnson-Mehl-Avrami-Kolmogorov equation, and the values of the Avrami's adjustable parameters were discussed. The austempering reaction of the coarser austenite microstructure with secondary graphite precipitation featured the fastest kinetics, while the one derived from the medium austenite grain showed the slowest reaction rate. The increase in the graphite/austenite interfacial area reduced the half-transformation time (t50-value) by one magnitude compared to the austenite grain boundary area. The austempered samples from the rapid austenitization route comparatively featured the best tensile properties and the highest ISO and ASTM standards grades despite the considerable proportion of grain boundary allotriomorphic ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

© 1993.

Figure 6
Figure 7

Similar content being viewed by others

References

  1. T. Watmough, M.J. Malatesta, Strengthening of ductile iron for crankshaft applications. Trans. Am. Foundrymen’s Soc. 92, 83–99 (1984)

    CAS  Google Scholar 

  2. R.C. Voigt, Austempered ductile iron-processing and properties. Cast Metals 2(2), 71–93 (1989). https://doi.org/10.1080/09534962.1989.11818986

    Article  Google Scholar 

  3. J. Liu, R. Elliott, The influence of cast structure on the austempering of ductile iron. Int. J. Cast Met. Res. 11(5), 407–412 (1999). https://doi.org/10.1080/13640461.1999.11819308

    Article  CAS  Google Scholar 

  4. Yazdani S, Elliott R (1999) Influence of molybdenum on austempering behaviour of ductile iron Part austempering kinetics and mechanical properties of ductile iron containing. Materials Science and Technology. 15(5) 531–540 https://doi.org/10.1080/13640461.2002.11819471

  5. A. Basso, J. Sikora, Review on production processes and mechanical properties of dual phase austempered ductile iron. Int. J. Metalcast. 6, 7–14 (2012). https://doi.org/10.1007/BF03355473

    Article  CAS  Google Scholar 

  6. S. Méndez et al., Advanced properties of ausferritic ductile iron obtained in as-cast conditions. Int. J. Metalcast. 11, 116–122 (2017). https://doi.org/10.1007/s40962-016-0092-9

    Article  Google Scholar 

  7. G. Artola, I. Gallastegi, J. Izaga, M. Barreña, A. Rimmer, Austempered ductile Iron (ADI) alternative material for high-performance applications. Int. J. Metalcast. 11, 131–135 (2017). https://doi.org/10.1007/s40962-016-0085-8

    Article  Google Scholar 

  8. F. Zanardi et al., A contribution to new material standards for ductile irons and austempered ductile irons. Int. J. Metalcast. 11, 136–147 (2017). https://doi.org/10.1007/s40962-016-0095-6

    Article  Google Scholar 

  9. J.O. Olawale et al., Forced-air cooling quenching: a novel technique for austempered ductile iron production. Int. J. Metalcast. 11, 568–580 (2017). https://doi.org/10.1007/s40962-016-0114-7

    Article  Google Scholar 

  10. W.L. Guesser, C.L. Lopes, P.A.N. Bernardini, Austempered ductile iron with dual microstructures: effect of initial microstructure on the austenitizing process. Int. J. Metalcast. 14, 717–727 (2020). https://doi.org/10.1007/s40962-019-00397-y

    Article  CAS  Google Scholar 

  11. M. Soliman, A. Nofal, H. Palkowski, Effect of thermo-mechanical processing on structure and properties of dual-phase matrix ADI with different Si-contents. Int. J. Metalcast. 14, 853–860 (2020). https://doi.org/10.1007/s40962-020-00477-4

    Article  CAS  Google Scholar 

  12. C. Hartung et al., Research on solution strengthened ferritic ductile iron structure and properties using different treatment and inoculation materials. Int. J. Metalcast. 14, 1195–1209 (2020). https://doi.org/10.1007/s40962-020-00469-4

    Article  CAS  Google Scholar 

  13. F. Zanardi, C. Mapelli, S. Barella, Reclassification of spheroidal graphite ductile cast irons grades according to design needs. Int. J. Metalcast. 14, 622–655 (2020). https://doi.org/10.1007/s40962-020-00454-x

    Article  CAS  Google Scholar 

  14. ASTM International. A897/A897M-15 Standard Specification for Austempered Ductile Iron Castings. West Conshohocken, PA; ASTM International, 2015. . https://doi-org.ez67.periodicos.capes.gov.br/10.1520/A0897_A0897M-15

  15. ISO Standard. ISO 17804:2005. Founding — Ausferritic spheroidal graphite cast irons – Classification. International Organization for Standardization, Geneva, Switzerland, 2005. https://www.iso.org/obp/ui/#iso:std:iso:17804:ed-1:v1:en

  16. Cambridge Engineering Selector Software, 2019. Austempered ductile cast iron (ADI). Level 3 Database

  17. H.K.D.H. Bhadeshia, D.V. Edmonds, The bainite transformation in a silicon steel. Metallurgical and Mater. Trans. A 10(7), 895–907 (1979). https://doi.org/10.1007/BF02658309

    Article  Google Scholar 

  18. B.P.J. Sandvik, The Bainite reaction in Fe-Si-C Alloys: The primary stage. Metallurgical and Mater. Trans. A 13(5), 777–787 (1982). https://doi.org/10.1007/BF02642391

    Article  CAS  Google Scholar 

  19. H. K. D. H. Bhadeshia. Bainite in steels. Third edition, Maney Publishing, Wakefield, UK, 589 pages (2015). https://www.phase-trans.msm.cam.ac.uk/2018/Bainite_3.pdf

  20. D.V. Edmonds, R.C. Cochrane, Structure-property relationships in bainitic steels. Metallurgical and Materials Transactions A 21(6), 1527–1540 (1990). https://doi.org/10.1007/BF02672567

    Article  Google Scholar 

  21. H.B. Aanon, H.I. Aaronson, Altering the time cycle of heat treatment by controlling grain boundary and subboundary structure. Metallurgical and Materials Transactions 2(1), 23–39 (1971). https://doi.org/10.1007/BF02662635

    Article  Google Scholar 

  22. C.R.F. Azevedo, A.A. Garboggini, A.P. Tschiptschin, Effect of austenite grain refinement on morphology of product of bainitic reaction in austempered ductile iron. Mater. Sci. Technol. 9(8), 705–710 (1993). https://doi.org/10.1179/mst.1993.9.8.705

    Article  CAS  Google Scholar 

  23. R. A. Grange, E. R. Shackelford. Method of Producing Ultrafine Grained Steel. U.S. Pat. 3,178,324, 1965; assigned to U.S. Steel Corp. https://patentimages.storage.googleapis.com/c9/f7/5c/539395d255700f/US3178324.pdf

  24. C.A. Apple, G. Krauss Jr., The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys. Acta Metall. 20(7), 849–856 (1972). https://doi.org/10.1016/0001-6160(72)90077-6

    Article  CAS  Google Scholar 

  25. G. Krauss Jr., Fine structure of austenite produced by the reverse martensitic transformation. Acta Metall. 11(11), 499–509 (1963). https://doi.org/10.1016/0001-6160(63)90085-3

    Article  CAS  Google Scholar 

  26. R.A. Grange, The rapid heat treatment of steel. Metallurgical and Materials Transactions A 22(1), 65–78 (1991). https://doi.org/10.1007/BF02662639

    Article  Google Scholar 

  27. R.A. Grange, Strengthening steel by austenite grain refinement. Trans. ASM 59(1), 27–48 (1966)

    Google Scholar 

  28. N.C. Law, D.V. Edmonds, The formation of austenite in a low-alloy steel. Metallurgical and Materials Transactions A 11(1), 33–46 (1980). https://doi.org/10.1007/BF02700436

    Article  Google Scholar 

  29. K.M. Ibrahim, Properties of ausformed austempered ductile iron (AADI) containing Ni. Int. J. Cast Met. Res. 18(5), 309–314 (2005). https://doi.org/10.1179/136404605225023045

    Article  CAS  Google Scholar 

  30. H. Nasr El-Din, A.A. Nofal, K.M. Ibrahim, A.A. Ramadan, Ausforming of austempered ductile iron alloyed with nickel. Int. J. Cast Met. Res. 19(3), 137–150 (2006). https://doi.org/10.1179/136404606225023381

    Article  CAS  Google Scholar 

  31. A.A. Nofal, H. Nasr El-din, M.M. Ibrahim, Thermomechanical treatment of austempered ductile iron. Int. J. Cast Metals Res. 20(2), 47–52 (2007). https://doi.org/10.1179/136404607X216613

    Article  CAS  Google Scholar 

  32. S. Panneerselvam, S. K. Putatunda (2018). Processing of Nanostructured Austempered Ductile Cast Iron ADI by a Novel Method. International Journal of Metallurgy and Metal Physics, 3(2) 11. https://doi.org/10.35840/2631-5076/9220

  33. V. Kilicli, M. Erdogan, Tensile properties of partially austenitised and austempered ductile irons with dual matrix structures. Mater. Sci. Technol. 22(8), 919–928 (2006). https://doi.org/10.1179/174328406X102390

    Article  CAS  Google Scholar 

  34. S.K. Putatunda, Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Mater. Sci. Eng. A 315(1–2), 70–80 (2001). https://doi.org/10.1016/S0921-5093(01)01210-2

    Article  Google Scholar 

  35. H. Santos, A. Duarte, J. Seabra, Austempered ductile iron with tempered martensite. Int. J. Cast Met. Res. 15(2), 117–124 (2002). https://doi.org/10.1080/13640461.2002.11819470

    Article  CAS  Google Scholar 

  36. J. Yang, S.K. Putatunda, Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Mater. Sci. Eng. A 382(1–2), 265–279 (2004). https://doi.org/10.1016/j.msea.2004.04.076

    Article  CAS  Google Scholar 

  37. P. Rubin, R. Larker, E. Navara, M.-L. Antti, Graphite Formation and Dissolution in Ductile Irons and Steels Having High Silicon Contents: Solid-State Transformations. Metallography, Microstructure, and Analysis 7, 587–595 (2018). https://doi.org/10.1007/s13632-018-0478-6

    Article  CAS  Google Scholar 

  38. J. Liu, R. Elliott, The influence of cast structure on the austempering of ductile iron. Part 3. The role of nodule count on the kinetics, microstructure and mechanical properties of austempered Mn alloyed ductile iron. Int. J. Cast Met. Res. 12(3), 189–195 (1999). https://doi.org/10.1080/13640461.1999.11819356

    Article  CAS  Google Scholar 

  39. Y. Osafune, M. Yuyama, Microstructure and properties of austempered ductile cast iron with refined graphite nodules. Int. J. Cast Met. Res. 21(1–4), 90–95 (2008). https://doi.org/10.1179/136404608X361738

    Article  CAS  Google Scholar 

  40. D.R. Askeland, F. Farinez, Factors Affecting the Formation of Secondary Graphite in Quenched and Tempered Ductile Iron. AFS Trans. 87, 99–106 (1979)

    CAS  Google Scholar 

  41. S.A. Rounaghi, P. Shayesteh, A.R. Kiani-Rashid, Microstructural study in graphitised hypereutectoid cast and commercial steels. Mater. Sci. Technol. 27, 631–636 (2011). https://doi.org/10.1179/026708310X520493

    Article  CAS  Google Scholar 

  42. A. S. O. Pimentel, Grafitização secundária em ferro fundido cinzento. MSc dissertati on, Universidade do Estado de Santa Catarina, 2011. http://tede.udesc.br/tede/tede/1682

  43. J. Vatavuk, A. Sinatora, H. Goldenstein, E. Albertin, R. Fuoco. Factors affecting ductile-brittle transition of ferritic spheroidal graphite cast iron. XXII International Metallurgy Congress, Bologna, Italy, Proceedings, Part II, 1563-1575 (1988). https://www.researchgate.net/publication/273439418_Factors_Affecting_Ductile-brittle_Transition_of_Ferritic_Spheroidal_Graphite_Cast_Iron

  44. T. Skaland, Ø. Grong, T. Grong. A model for the graphite formation in ductile cast iron: Part II. Solid state transformation reactions. Metallurgical and Materials Transactions A, 24 2347–53 (1993). https://link.springer.com/content/pdf/10.1007%2FBF02648606.pdf

  45. K. Hayrynen. Heat Treatment of Ductile Iron. ASM International, 1A 256-269 (2017). https://doi.org/10.31399/asm.hb.v01a.a0006322.

  46. H. Berns, W. Theisen, Ferrous Materials (Springer-Verlag, Berlin Heidelberg, 2008), p. 417

    Google Scholar 

  47. L.C.D. Fielding, The Bainite Controversy. Mater. Sci. Technol. 29(4), 383–399 (2013). https://doi.org/10.1179/1743284712Y.0000000157

    Article  CAS  Google Scholar 

  48. J.G. Zhu, X. Sun, G.C. Barber, X. Han, H. Qin, Bainite Transformation-Kinetics-Microstructure Characterization of Austempered 4140 Steel. Metals 10(2), 236 (2020). https://doi.org/10.3390/met10020236

    Article  CAS  Google Scholar 

  49. M. Avrami, Kinetics of phase change. I. General theory. J. Chem. Phy. 7, 1103–1132 (1939). https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  50. J.R.C. Guimarães, P.R. Rios, A.L.M. Alves, An Alternative to Avrami Equation. Mater. Res. 22(5), e 20190369 8 (2019). https://doi.org/10.1590/1980-5373-MR-2019-0369

    Article  Google Scholar 

  51. M.J. Starink, Kinetic equations for diffusion-controlled precipitation reactions. J. Mater. Sci. 32, 4061–4070 (1997). https://doi.org/10.1023/A:1018649823542

    Article  CAS  Google Scholar 

  52. C.R.F. Azevedo. Effect of austenite grain size on the morphology and kinetics of the bainitic reaction of an austempered ductile iron. MSc Dissertation. The University of São Paulo, 1991 (in Portuguese). https://teses.usp.br/teses/disponiveis/3/3133/tde-11102007-165928/publico/mestrado.pdf

  53. D.R. Barraclough, Etching of prior austenite grain boundaries in martensite. Metallography 6(6), 465–472 (1973). https://doi.org/10.1016/0026-0800(73)90044-X

    Article  CAS  Google Scholar 

  54. P.R. Krahe, M. Desnouses, Revealing the Former Austenite Grain Boundaries of High-Purity Iron Carbon Alloys. Metallography 4(2), 171–175 (1971). https://doi.org/10.1016/0026-0800(71)90027-9

    Article  CAS  Google Scholar 

  55. V.L. Viswanathan, A new etchant to reveal prior austenite grain boundaries in martensitic stainless steels. Metallography 10(3), 291–297 (1977). https://doi.org/10.1016/0026-0800(77)90032-5

    Article  CAS  Google Scholar 

  56. R. Riedl, A suggestion for the consistent determination of austenite grain size. Practic. Metall. 15(11), 537–541 (1978)

    Article  Google Scholar 

  57. R. Riedl, The determination of austenite grain size of cast-iron. Practic. Metall. 16(12), 570–577 (1979)

    Article  CAS  Google Scholar 

  58. R. Riedl, The determination of austenite grain size in ferrous alloys. Metallography 14(2), 119–28 (1981). https://doi.org/10.1016/0026-0800(81)90036-7

    Article  CAS  Google Scholar 

  59. ASM Handbook Volume 8: Metallography, Structures and Phase Diagrams. Edited by T. Lyman. 8th Edition. Metal Park, Ohio, American Society for Metals, 1970

  60. ASTM International. E562-19 Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. West Conshohocken, PA; ASTM International, 2015. https://doi.org/10.1520/E0562-19

  61. J. Damon, F. Mühl, S. Dietrich, V. Schulze, A Comparative Study of Kinetic Models Regarding Bainitic Transformation Behavior in Carburized Case Hardening Steel 20MnCr5. Metall. Mater. Trans. A 50, 104–117 (2019). https://doi.org/10.1007/s11661-018-5004-6

    Article  CAS  Google Scholar 

  62. K.M. Pedersen, N.S. Tiedje, Graphite nodule count and size distribution in thin-walled ductile cast iron. Mater. Charact. 59(8), 1111–1121 (2008). https://doi.org/10.1016/j.matchar.2007.09.001

    Article  CAS  Google Scholar 

  63. J. W. Christian. The Theory of Polycrystalline Aggregates. In: The Theory of Transformations in Metals and Alloys, Chapter 8. 3rd Edition, Pergamon pp. 327- 377 (2002)

  64. M.M. Cisneros G, M.J. Pérez L, R.E. Campos C, E. Valdés C, The role of Cu, Mo and Ni on the kinetics of the bainitic reaction during the austempering of ductile irons. Int. J. Cast Met. Res. 11(5), 425–430 (1999). https://doi.org/10.1080/13640461.1999.11819311

    Article  CAS  Google Scholar 

  65. C. Suchocki, D. Myszka, K. Wasiluk. Transformation Kinetics of Austempered Ductile Iron: Dilatometric Experiments and Model Parameter Evaluation. Archives of Metallurgy and Materials, 64 (4) 1661-1666 (2019). https://doi.org/10.24425/amm.2019.130141.

  66. A. Matsuzaki, H.K.D.H. Bhadeshia, Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Mater. Sci. Technol. 15(5), 518–522 (1999). https://doi.org/10.1179/026708399101506210

    Article  CAS  Google Scholar 

  67. I.A. Yakubtsov, G.R. Purdy, Analyses of Transformation Kinetics of Carbide-Free Bainite Above and Below the Athermal Martensite-Start Temperature. Metall Mater Trans A 43, 437–446 (2012). https://doi.org/10.1007/s11661-011-0911-9

    Article  CAS  Google Scholar 

  68. A.A. Kuklina, M.V. Maisuradze, Y.V. Yudin, Analytical Description of the Bainite Transformation Kinetics in Steels 300M and D6AC. Mater. Sci. Forum 907, 31–37 (2017). https://doi.org/10.4028/www.scientific.net/MSF.907.31

    Article  Google Scholar 

  69. J. Achary, D. Venugopalan, Microstructural development and austempering kinetics of ductile iron during thermomechanical processing. Metallurgical Mater. Trans. A 31, 2575–2585 (2000). https://doi.org/10.1007/s11661-000-0202-3

    Article  Google Scholar 

  70. A.D. Boccardo, P.M. Dardati, D.J. Celentano, L.A. Goday, A microscale model for ausferritic transformation of austempered ductile irons. Metallurgical Mater. Trans. A 48, 524–535 (2017). https://doi.org/10.1007/s11661-016-3816-9

    Article  CAS  Google Scholar 

  71. S.-M. Yoo, K. Moeinipour, A. Ludwig, P.R. Sahm, Numerical simulation and experimental results of in situ heat treated austempered ductile Iron. Int. J. Cast Met. Res. 11(6), 483–488 (1999). https://doi.org/10.1080/13640461.1999.11819321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support of the Institute for the Technological Research of the State of São Paulo (IPT), especially Dr. R. Fuoco, Dr. E. Albertin, and Mrs. L. Casciny. Additionally, Prof. Cesar R. F. Azevedo would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) for his research grant (Process: 302077/2016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. F. Azevedo.

Ethics declarations

Conflict of interest

The manuscript submitted represents original work and has not been previously published or simultaneously submitted elsewhere for publication. The manuscript has been read and approved by all authors. The paper was partially sponsored by the Institute for the Technological Research of the State of São Paulo (IPT). Finally, the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, H.B., Tschiptschin, A.P., Goldenstein, H. et al. Effect of the Austenitization Route on the Bainitic Reaction Kinetics and Tensile Properties of an Alloyed Austempered Ductile Iron. Inter Metalcast 15, 1442–1455 (2021). https://doi.org/10.1007/s40962-020-00569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00569-1

Keywords

Navigation