Skip to main content
Log in

Obesity paradox in pulmonary hypertension due to left ventricular systolic dysfunction

Adipositasparadox bei pulmonaler Hypertonie aufgrund linksventrikulärer systolischer Dysfunktion

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Objective

Pulmonary hypertension (PH) due to left ventricular systolic dysfunction (PH-HFrEF) is a common heart disease with poor prognosis. In this study, we explored the risk factors for PH-HFrEF and investigated the related factors affecting the prognosis of PH-HFrEF patients.

Methods

The study recruited consecutive patients with PH-HFrEF and systolic pulmonary artery pressure (sPAP) of more than 40 mm Hg with left ventricular ejection fraction (LVEF) of less than 45% on echocardiography. Patients with left ventricular systolic dysfunction (HFrEF) but without PH (sPAP < 30 mmHg and LVEF < 45%) were chosen as the control group. Patients were followed up for 18 months, and major adverse cardiac events (MACE) were recorded.

Results

In total, 93 patients with PH-HFrEF formed the study group and 93 LVEF-matched patients with HFrEF were enrolled as controls. Body mass index (BMI) in PH-HFrEF patients was significantly lower compared with the control group (p < 0.05). Multivariate logistic regression analysis revealed that low BMI was an independent predictor of the presence of PH in patients with HFrEF (p < 0.05). There were 23 (24.7%) MACE in the PH-HFrEF group and 18 (19.4%) MACE in the control group. Cox regression analysis showed that low BMI was an independent predictor of MACE occurrence in the PH-HFrEF group (p < 0.05).

Conclusion

Low BMI appear to be significantly associated with PH occurrence in patients with HFrEF, and is an independent predictor of MACE in patients with PH-HFrEF.

Zusammenfassung

Ziel

Die pulmonale Hypertonie (PH) aufgrund linksventrikulärer systolischer Dysfunktion (PH-HFrEF) stellt eine häufige Herzerkrankung mit ungünstiger Prognose dar. In der vorliegenden Studie wurden die Risikofaktoren für eine PH-HFrEF und die entsprechenden Faktoren mit Einfluss auf die Prognose von PH-HFrEF-Patienten untersucht.

Methoden

Für die Studie wurden konsekutiv Patienten mit PH-HFrEF und systolischem pulmonalarteriellem Druck (sPAP) von mehr als 40 mm Hg mit linksventrikulärer Ejektionsfraktion (LVEF) von weniger als 45% in der Echokardiographie rekrutiert. Patienten mit linksventrikulärer systolischer Dysfunktion (HFrEF), aber ohne PH (sPAP < 30 mm Hg und LVEF < 45%) wurden als Kontrollgruppe ausgewählt. Die Patienten wurden 18 Monate lang nachbeobachtet, dabei wurden schwere ungünstige kardiale Ereignisse („major adverse cardiac events“, MACE) dokumentiert.

Ergebnisse

Insgesamt bildeten 93 Patienten mit PH-HFrEF die Studiengruppe und 93 LVEF-gematchte Patienten mit HFrEF die Kontrollgruppe. Der Body-Mass-Index (BMI) bei den PH-HFrEF-Patienten war signifikant niedriger als in der Kontrollgruppe (p < 0,05). Die multivariate logistische Regressionsanalyse ergab, dass ein niedriger BMI ein unabhängiger Prädiktor für das Vorliegen einer PH bei Patienten mit HFrEF (p < 0,05) war. Es gab 23 (24,7%) MACE in der PH-HFrEF-Gruppe und 18 (19,4%) MACE in der Kontrollgruppe. In der Cox-Regressionsanalyse zeigte sich, dass ein niedriger BMI ein unabhängiger Prädiktor für das Auftreten von MACE in der PH-HFrEF-Gruppe war (p < 0,05).

Schlussfolgerung

Ein niedriger BMI scheint signifikant mit dem Vorliegen einer PH bei Patienten mit HFrEF assoziiert zu sein und stellt einen unabhängigen Prädiktor für das Auftreten von MACE bei Patienten mit PH-HFrEF dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS): endorsed by: association for European paediatric and congenital cardiology (AEPC), international society for heart and lung transplantation (ISHLT). Eur Heart J 37:67–119

    Article  Google Scholar 

  2. Oudiz RJ (2007) Pulmonary hypertension associated with left-sided heart disease. Clin Chest Med 28:233–241

    Article  Google Scholar 

  3. Schmeisser A, Schroetter H, Braun-Dulleaus RC (2013) Management of pulmonary hypertension in left heart disease. Ther Adv Cardiovasc Dis 7:131–151

    Article  Google Scholar 

  4. Farber HW, Gibbs S (2015) Under pressure: pulmonary hypertension associated with left heart disease. Eur Respir Rev 24:665–673

    Article  Google Scholar 

  5. Oudiz RJ (2007) Pulmonary hypertension associated with left-sided heart disease. Clin Chest Med 28:233–2341

    Article  Google Scholar 

  6. Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M et al (2013) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62(25):D13–21

    Article  CAS  Google Scholar 

  7. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al (2005) Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  Google Scholar 

  8. Ommen SR, Nishimura RA, Hurrell DG, Klarich KW (2000) Assessment of right atrial pressure with 2‑dimensional and Doppler echocardiography: a simultaneous catheterization and echocardiographic study. Mayo Clin Proc 75:24–29

    Article  CAS  Google Scholar 

  9. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin M et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart failure society of america. J Am Coll Cardiol 70:776–803

    Article  Google Scholar 

  10. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1):S55–66

    Article  Google Scholar 

  11. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  Google Scholar 

  12. Shindler DM, Kostis JB, Yusuf S, Quinones MA, Pitt B, Stewart D et al (1996) Diabetes mellitus, a predictor of morbidity and mortality in the studies of left ventricular dysfunction (SOLVD) trials and registry. Am J Cardiol 77:1017–1020

    Article  CAS  Google Scholar 

  13. Dauriz M, Targher G, Laroche C, Temporelli PL, Ferrari R, Anker S et al (2017) Association between diabetes and 1‑year adverse clinical outcomes in a multinational cohort of ambulatory patients with chronic heart failure: results from the ESC-HFA heart failure long-term registry. Diabetes Care 40:671–678

    Article  CAS  Google Scholar 

  14. Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P et al (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852:232–242

    Article  CAS  Google Scholar 

  15. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM (2007) Renin-angiotensin system and cardiovascular risk. Lancet 369:1208–1219

    Article  CAS  Google Scholar 

  16. Kumar R, Yong QC, Thomas CM, Baker KM (2012) Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol 302:R510–517

    Article  CAS  Google Scholar 

  17. Connelly KA, Kelly DJ, Zhang Y, Prior DL, Advani A, Cox AJ et al (2009) Inhibition of protein kinase C‑beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137

    Article  CAS  Google Scholar 

  18. Latha R, Shanthi P, Sachdanandam P (2013) Kalpaamruthaa modulates oxidative stress in cardiovascular complication associated with type 2 diabetes mellitus through PKC-β/Akt signaling. Can J Physiol Pharmacol 91:901–912

    Article  CAS  Google Scholar 

  19. Ishikawa T, Kajiwara H, Kurihara S (1999) Alterations in contractile properties and Ca2+ handling in streptozotocin-induced diabetic rat myocardium. Am J Physiol 277:H2185–2194

    PubMed  CAS  Google Scholar 

  20. Movahed MR, Hashemzadeh M, Jamal MM (2005) The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest 128:3568–3571

    Article  Google Scholar 

  21. Whitaker ME, Nair V, Sinari S, Dherange PA, Natarajan B, Trutter L et al (2018) Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension. Am J Med 131:702.e7–702.e13

    Article  Google Scholar 

  22. Habbu A, Lakkis NM, Dokainish H (2006) The obesity paradox: fact or fiction? Am J Cardiol 98:944–948

    Article  Google Scholar 

  23. Fonarow GC, Srikanthan P, Costanzo MR, Cintron GB, Lopatin M (2007) Adhere scientific advisory committee and investigators. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the acute decompensated heart failure national registry. Am Heart J 153:74–81

    Article  Google Scholar 

  24. Christenson RH, Azzazy HM, Duh SH, Maynard S, Seliger SL, Defilippi CR (2010) Impact of increased body mass index on accuracy of B‑type natriuretic peptide (BNP) and N‑terminal proBNP for diagnosis of decompensated heart failure and prediction of all-cause mortality. Clin Chem 56:633–641

    Article  CAS  Google Scholar 

  25. Yoshihisa A, Sato T, Kajimoto K, Sato N, Takeishi Y, Acute Decompensated Heart Failure Syndromes (ATTEND) investigators (2017) Heterogeneous impact of body mass index on in-hospital mortality in acute heart failure syndromes: an  analysis from the ATTEND registry. Eur Heart J Acute Cardiovasc Care. https://doi.org/10.1177/2048872617703061

    Article  PubMed  Google Scholar 

  26. Zeng WJ, Sun YJ, Gu Q, Xiong CM, Li JJ, He JG (2012) Impact of sildenafil on survival of patients with idiopathic pulmonary arterial hypertension. J Clin Pharmacol 52:1357–1364

    Article  CAS  Google Scholar 

  27. Zeng WJ, Sun YJ, Gu Q, Xiong CM, Li JJ, He JG (2012) The impact of pulmonary arterial hypertension-targeted therapy on survival in Chinese patients with idiopathic pulmonary arterial hypertension. Pulm Circ 2:373–378

    Article  Google Scholar 

  28. Hu EC, He JG, Liu ZH, Ni XH, Zheng YG, Gu Q et al (2014) Survival advantages of excess body mass index in patients with idiopathic pulmonary arterial hypertension. Acta Cardiol 69:673–678

    Article  Google Scholar 

  29. Takiguchi M, Yoshihisa A, Miura S, Shimizu T, Nakamura Y, Yamauchi H et al (2014) Impact of body mass index on mortality in heart failure patients. Eur J Clin Invest 44:1197–1205

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Suzhou Science and Technology Development Program Guidance Project Fund (grant number SYSD2013093), the Youth Natural Science Fund of Soochow University (grant number SDY2013A32), the Research Fund of the Second Affiliated Hospital of Soochow University (grant number SDFEYGJ1405), and the Xinxin Heart (SIP) Foundation (2019-CCA-ACCESS-058). The authors gratefully acknowledge the assistance of Dr. Xinyi Zhu, Miss Yan-Ni Wu, and Miss Jing Zhu with patient recruitment. The authors would like to thank the participants and their families for participating in this study.

Author information

Authors and Affiliations

Authors

Contributions

LPZ and LW participated in the study design. YC participated data analysis. XC, FJ and XL participated in acquisition of data and interpretation of the results. LPZ and LW contributed to writing and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang-Ping Zhao.

Ethics declarations

Conflict of interest

L. Wang, L.-P. Zhao, Y. Chen, X. Chang, F. Jin, and X. Liu declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, LP., Chen, Y. et al. Obesity paradox in pulmonary hypertension due to left ventricular systolic dysfunction. Herz 46, 575–580 (2021). https://doi.org/10.1007/s00059-021-05023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-021-05023-4

Keywords

Schlüsselwörter

Navigation