Skip to main content
Log in

Non-Gaussian normal diffusion in low dimensional systems

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian normal diffusion (NGND), whereby their displacements grow with mean square proportional to the observation time and non-Gaussian statistics. Their distributions appear to decay almost exponentially according to “universal” laws largely insensitive to the observation time. This effect is generically attributed to slow environmental fluctuations, which perturb the local configuration of the suspension medium. To investigate the microscopic mechanisms responsible for the NGND phenomenon, we study Brownian diffusion in low dimensional systems, like the free diffusion of ellipsoidal and active particles, the diffusion of colloidal particles in fluctuating corrugated channels and Brownian motion in arrays of planar convective rolls. NGND appears to be a transient effect related to the time modulation of the instantaneous particle’s diffusivity, which can occur even under equilibrium conditions. Consequently, we propose to generalize the definition of NGND to include transient displacement distributions which vary continuously with the observation time. To this purpose, we provide a heuristic one-parameter function, which fits all time-dependent transient displacement distributions corresponding to the same diffusion constant. Moreover, we reveal the existence of low dimensional systems where the NGND distributions are not leptokurtic (fat exponential tails), as often reported in the literature, but platykurtic (thin sub-Gaussian tails), i.e., with negative excess kurtosis. The actual nature of the NGND transients is related to the specific microscopic dynamics of the diffusing particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wang, S. M. Anthony, S. C. Bae, and S. Granick, Anomalous yet Brownian, Proc. Natl. Acad. Sci. USA 106(36), 15160 (2009)

    Article  ADS  Google Scholar 

  2. B. Wang, J. Kuo, C. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nat. Mater. 11(6), 481 (2012)

    Article  ADS  Google Scholar 

  3. S. Bhattacharya, D. K. Sharma, S. Saurabh, S. De, A. Sain, A. Nandi, and A. Chowdhury, Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: Insight from single-molecule tracer diffusion dynamics, J. Phys. Chem. B 117(25), 7771 (2013)

    Article  Google Scholar 

  4. J. Kim, C. Kim, and B. J. Sung, Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids, Phys. Rev. Lett. 110(4), 047801 (2013)

    Article  ADS  Google Scholar 

  5. G. Kwon, B. J. Sung, and A. Yethiraj, Dynamics in crowded environments: Is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B 118(28), 8128 (2014)

    Article  Google Scholar 

  6. J. Guan, B. Wang, and S. Granick, Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion, ACS Nano 8(4), 3331 (2014)

    Article  Google Scholar 

  7. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Berlin: Springer, 2009

    MATH  Google Scholar 

  8. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Three-dimensional direct imaging of structural relaxation near the colloidal glass transition, Science 287(5453), 627 (2000)

    Article  ADS  Google Scholar 

  9. J. D. Eaves, and D. R. Reichman, Spatial dimension and the dynamics of supercooled liquids, Proc. Natl. Acad. Sci. USA 106(36), 15171 (2009)

    Article  ADS  Google Scholar 

  10. K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett. 103(19), 198103 (2009)

    Article  ADS  Google Scholar 

  11. W. K. Kegel and A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science 287(5451), 290 (2000)

    Article  ADS  Google Scholar 

  12. P. Chaudhuri, L. Berthier, and W. Kob, Universal nature of particle displacements close to glass and jamming transitions, Phys. Rev. Lett. 99(6), 060604 (2007)

    Article  ADS  Google Scholar 

  13. S. K. Ghosh, A. G. Cherstvy, D. S. Grebenkov, and R. Metzler, Anomalous non-Gaussian tracer diffusion in crowded two-dimensional environments, New J. Phys. 18(1), 013027 (2016)

    Article  ADS  Google Scholar 

  14. W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng, and P. Tong, Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane, Nat. Commun. 7(1), 11701 (2016)

    Article  ADS  Google Scholar 

  15. K. Białas, J. Łuczka, P. Hänggi, and J. Spiechowicz, Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise, Phys. Rev. E 102, 042121 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  16. M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion, Phys. Rev. Lett. 113(9), 098302 (2014)

    Article  ADS  Google Scholar 

  17. A. G. Cherstvy and R. Metzler, Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes, Phys. Chem. Chem. Phys. 18(34), 23840 (2016)

    Article  Google Scholar 

  18. R. Jain and K. L. Sebastian, Diffusion in a crowded, rearranging environment, J. Phys. Chem. B 120(16), 3988 (2016)

    Article  Google Scholar 

  19. R. Jain and K. L. Sebastian, Diffusing diffusivity: A new derivation and comparison with simulations, J. Chem. Sci. 129(7), 929 (2017)

    Article  Google Scholar 

  20. N. Tyagi and B. J. Cherayil, Non-Gaussian Brownian diffusion in dynamically disordered thermal environments, J. Phys. Chem. B 121(29), 7204 (2017)

    Article  Google Scholar 

  21. L. Luo and M. Yi, Non-Gaussian diffusion in static disordered media, Phys. Rev. E 97(4), 042122 (2018)

    Article  ADS  Google Scholar 

  22. A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities, Phys. Rev. X 7(2), 021002 (2017)

    Google Scholar 

  23. J. Ślçzak, R. Metzler, and M. Magdziarz, Superstatistical generalised Langevin equation: Non-Gaussian viscoelastic anomalous diffusion, New J. Phys. 20(2), 023026 (2018)

    Article  ADS  Google Scholar 

  24. Y. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Non-Gaussian normal diffusion in a fluctuating corrugated channel, Phys. Rev. Res. 1(3), 033003 (2019)

    Article  Google Scholar 

  25. P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)

    Article  ADS  Google Scholar 

  26. R. Lipowsky, Generic interactions of flexible membranes, in: Handbook of Biological Physics, Eds. R. Lipowsky and E. Sackmann, Vol. 1, Ch. 11, Elsevier, 1995

  27. P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, Diffusion in confined geometries, ChemPhysChem 10(1), 45 (2009)

    Article  Google Scholar 

  28. X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, and H. P. Zhang, Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels, Proc. Natl. Acad. Sci. USA 114(36), 9564 (2017)

    Article  ADS  Google Scholar 

  29. V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and R. Metzler, Random diffusivity from stochastic equations: Comparison of two models for Brownian yet non-Gaussian diffusion, New J. Phys. 20(4), 043044 (2018)

    Article  ADS  Google Scholar 

  30. L. Luo and M. Yi, Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion, Phys. Rev. E 100(4), 042136 (2019)

    Article  ADS  Google Scholar 

  31. L. Luo and M. Yi, Ergodicity recovery of random walk in heterogeneous disordered media, Chin. Phys. B 29(5), 050503 (2020)

    Article  ADS  Google Scholar 

  32. For a review, see: H. C. Berg, Random Walk in Biology, Princeton University Press, 1984

  33. F. Perrin, Mouvement brownien d’un ellipsoide (I): Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium 5(10), 497 (1934)

    Article  MATH  Google Scholar 

  34. F. Perrin, Mouvement Brownien d’un ellipsoide (II): Rotation libre et dépolarisation des fluorescences (Translation et diffusion de molécules ellipsoidales), J. Phys. Radium VII, 1 (1936)

    Article  MATH  Google Scholar 

  35. Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, Brownian motion of an ellipsoid, Science 314(5799), 626 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992

  37. S. R. Aragón and R. Pecora, General theory of dynamic light scattering from cylindrically symmetric particles with translational-rotational coupling, J. Chem. Phys. 82(12), 5346 (1985)

    Article  ADS  Google Scholar 

  38. S. Leitmann, F. Höfling, and T. Franosch, Dynamically crowded solutions of infinitely thin Brownian needles, Phys. Rev. E 96(1), 012118 (2017)

    Article  ADS  Google Scholar 

  39. S. Prager, Interaction of rotational and translational diffusion, J. Chem. Phys. 23(12), 2404 (1955)

    Article  ADS  Google Scholar 

  40. S. Jiang and S. Granick (Eds.), Janus particle synthesis, self-assembly and applications, RSC Publishing, Cambridge, 2012

    Google Scholar 

  41. A. Walther and A. H. E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications, Chem. Rev. 113(7), 5194 (2013)

    Article  Google Scholar 

  42. M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active matter, Rev. Mod. Phys. 85(3), 1143 (2013)

    Article  ADS  Google Scholar 

  43. J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers, single particle motion and collective behavior: A review, Rep. Prog. Phys. 78(5), 056601 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  44. see: e.g., Smart Drug Delivery System, edited by A. D. Sezer, IntechOpen, 2016

  45. J. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, 2013

    Book  Google Scholar 

  46. G. Volpe, I. Buttinoni, D. Vogt, H. J. Kümmerer, and C. Bechinger, Microswimmers in patterned environments, Soft Matter 7(19), 8810 (2011)

    Article  ADS  Google Scholar 

  47. P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-propelled Janus particles in a ratchet: Numerical simulations, Phys. Rev. Lett. 110(26), 268301 (2013)

    Article  ADS  Google Scholar 

  48. S. van Teeffelen and H. Löwen, Dynamics of a Brownian circle swimmer, Phys. Rev. E 78, 020101 (2008)

    Article  ADS  Google Scholar 

  49. D. Debnath, P. K. Ghosh, Y. Li, F. Marchesoni, and B. Li, Diffusion of eccentric microswimmers, Soft Matter 12(7), 2017 (2016)

    Article  ADS  Google Scholar 

  50. C. Kurzthaler, S. Leitmann, and T. Franosch, Intermediate scattering function of an anisotropic active Brownian particle, Sci. Rep. 6(1), 36702 (2016)

    Article  ADS  Google Scholar 

  51. J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-motile colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett. 99(4), 048102 (2007)

    Article  ADS  Google Scholar 

  52. B. ten Hagen, S. van Teeffelen, and H. Löwen, Non-Gaussian behaviour of a self-propelled particle on a substrate, Condens. Matter Phys. 12(4), 725 (2009)

    Article  Google Scholar 

  53. X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. Hä nggi, and F. Marchesoni, Diffusion of chiral Janus particles in a sinusoidal channel, EPL 109(1), 10003 (2015)

    Article  ADS  Google Scholar 

  54. X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and H. Löwen, Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory, Phys. Rev. E 88(3), 032304 (2013)

    Article  ADS  Google Scholar 

  55. D. Debnath, P. K. Ghosh, V. R. Misko, Y. Li, F. Marchesoni, and F. Nori, Enhanced motility in a binary mixture of active nano/microswimmers, Nanoscale 12(17), 9717 (2020)

    Article  Google Scholar 

  56. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, New York: Wiley, 1991

    MATH  Google Scholar 

  57. L. Bosi, P. K. Ghosh, and F. Marchesoni, Analytical estimates of free Brownian diffusion times in corrugated narrow channels, J. Chem. Phys. 137(17), 174110 (2012)

    Article  ADS  Google Scholar 

  58. T. H. Solomon and J. P. Gollub, Chaotic particle transport in time-dependent Rayleigh-Bénard convection, Phys. Rev. A 38(12), 6280 (1988)

    Article  ADS  Google Scholar 

  59. T. H. Solomon and I. Mezić, Uniform resonant chaotic mixing in fluid flows, Nature 425(6956), 376 (2003)

    Article  ADS  Google Scholar 

  60. M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton, Effective diffusion in laminar convective flows, Phys. Fluids 30(9), 2636 (1987)

    Article  MATH  ADS  Google Scholar 

  61. W. Young, A. Pumir, and Y. Pomeau, Anomalous diffusion of tracer in convection rolls, Phys. Fluids A 1(3), 462 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  62. Y. N. Young and M. J. Shelley, Stretch-coil transition and transport of fibers in cellular flows, Phys. Rev. Lett. 99(5), 058303 (2007)

    Article  ADS  Google Scholar 

  63. H. Manikantan and D. Saintillan, Subdiffusive transport of fluctuating elastic filaments in cellular flows, Phys. Fluids 25(7), 073603 (2013)

    Article  ADS  Google Scholar 

  64. A. Sarracino, F. Cecconi, A. Puglisi, and A. Vulpiani, Nonlinear response of inertial tracers in steady laminar flows: Differential and absolute negative mobility, Phys. Rev. Lett. 117(17), 174501 (2016)

    Article  ADS  Google Scholar 

  65. C. Torney and Z. Neufeld, Transport and aggregation of self-propelled particles in fluid flows, Phys. Rev. Lett. 99(7), 078101 (2007)

    Article  ADS  Google Scholar 

  66. N. O. Weiss, The expulsion of magnetic flux by eddies, Proc. R. Soc. Lond. A 293(1434), 310 (1966)

    Article  ADS  Google Scholar 

  67. Y. Li, L. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Diffusion of chiral janus particles in convection rolls., Physical Review Research 2(1), 013250 (2020)

    Article  ADS  Google Scholar 

  68. Q. Yin, Y. Li, F. Marchesoni, T. Debnath, and P. K. Ghosh, Exit times of a Brownian particle out of a convection roll, Phys. Fluids 32(9), 092010 (2020)

    Article  ADS  Google Scholar 

  69. J. Feng and T. G. Kurtz, Large Deviations for Stochastic processes, Mathematical Surveys and Monographs, Vol. 131, Am. Math. Society, 2006

  70. Q. Yin, Y. Li, B. Li, F. Marchesoni, S. Nayak, and P. K. Ghosh, Diffusion transients in convection rolls, J. Fluid Mech., Doi: https://doi.org/10.1017/jfm.2020.1127 (2021)

Download references

Acknowledgements

Y.L. was supported by the NSF China under Grant Nos. 11875201 and 11935010. P.K.G. was supported by SERB Start-up Research Grant (Young Scientist) No. YSS/2014/000853, and the UGC-BSR Start-Up Grant No. F.30-92/2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunyun Li, Fabio Marchesoni or Pulak K. Ghosh.

Additional information

arXiv: 2101.06875. This article can also be found at https://doi.org/10.1007/s11467-020-1022-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Li, Y., Marchesoni, F. et al. Non-Gaussian normal diffusion in low dimensional systems. Front. Phys. 16, 33203 (2021). https://doi.org/10.1007/s11467-020-1022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1022-0

Keywords

Navigation