Skip to main content
Log in

Recent progress in the design and fabrication of MXene-based membranes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two-dimensional membranes have attracted significant attention due to their superior characteristics, and their ability to boost both flux and selectivity have led to their reputation as potential next-generation separation membranes. Among them, emerging MXene-based membranes play significant roles in the competitive membrane-separation field. In this mini-review, we systematically discuss the assembly and separation mechanisms of these membranes. Moreover, we highlight strategies based on the crosslinking of MXene nanosheets and the construction of additional nanochannels that further enhance the permeabilities and anti-swelling properties of MXene-based membranes and meet the requirements of practical applications, such as gas-molecule sieving, ion sieving, and other small-molecule sieving. MXene nanosheets can also be used as additives that introduce specific functionalities into hybrid membranes. In addition, extended applications that use MXenes as scaffolds are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2014, 306(5696): 666–669

    Article  Google Scholar 

  2. Zhu J, Ha E, Zhao G L, Zhou Y, Huang D S, Yue G Z, Hu L S, Sun N, Wang Y, Lee L Y S, et al. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352: 306–327

    Article  CAS  Google Scholar 

  3. Zhan X X, Si C, Zhou J, Sun Z M. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5(2): 235–258

    Article  CAS  Google Scholar 

  4. Tang Q, Zhou Z. Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58(8): 1244–1315

    Article  CAS  Google Scholar 

  5. Huang K, Li Z J, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 2018, 47(14): 5109–5124

    Article  CAS  PubMed  Google Scholar 

  6. Cheng L, Guan K C, Liu G P, Jin W Q. Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. Journal of Membrane Science, 2020, 595: 117568

    Article  CAS  Google Scholar 

  7. Cheng Y D, Wang X R, Jia C K, Wang Y X, Zhai L Z, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metalorganic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223

    Article  CAS  Google Scholar 

  8. Lu P, Liu Y, Zhou T T, Wang Q, Li Y S. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103

    Article  CAS  Google Scholar 

  9. Wang X R, Chi C L, Zhang K, Qian Y H, Gupta K M, Kang Z X, Jiang J W, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Li J P, Yang Q Y, Zhong C L. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701

    Article  CAS  Google Scholar 

  11. Zhong Z X, Yao J F, Chen R Z, Low Z X, He M, Liu J Z, Wang H T. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(30): 15715–15722

    Article  CAS  Google Scholar 

  12. Shen J, Liu G P, Huang K, Jin W Q, Lee K R, Xu N P. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582

    PubMed  Google Scholar 

  13. Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383

    Article  CAS  PubMed  Google Scholar 

  14. Zhang M C, Guan K C, Ji Y F, Liu G P, Jin W Q, Xu N P. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10(1): 1253

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu R R, Zhang R J, He Y J, Zhao G K, Zhu H W. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization. Journal of Membrane Science, 2018, 564: 813–819

    Article  CAS  Google Scholar 

  16. Li Y, Yuan S, Xia Y, Zhao W, Easton C D, Selomulya C, Zhang X W. Mild annealing reduced graphene oxide membrane for nanofiltration. Journal of Membrane Science, 2020, 601: 117900

    Article  CAS  Google Scholar 

  17. Liang B, Zhan W, Qi G G, Lin S S, Nan Q, Liu Y X, Cao B, Pan K. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5140–5147

    Article  CAS  Google Scholar 

  18. Yan Y G, Wang W S, Li W, Loh K P, Zhang J. A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9: 18951

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M C, Mao Y Y, Liu G Z, Liu G P, Fan Y Q, Jin W Q. Molecular bridges stabilize graphene oxide membranes in water. Angewandte Chemie International Edition, 2020, 59(4): 1689–1695

    Article  CAS  PubMed  Google Scholar 

  20. Zhang M C, Sun J J, Mao Y Y, Liu G P, Jin W Q. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. Journal of Membrane Science, 2019, 574: 196–204

    Article  CAS  Google Scholar 

  21. Liu Y C, Zhu M, Chen M Y, Ma L L, Yang B, Li L L, Tu W W. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chemical Engineering Journal, 2019, 359: 47–57

    Article  CAS  Google Scholar 

  22. Cheng P, Chen Y, Gu Y H, Yan X, Lang W Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308

    Article  CAS  Google Scholar 

  23. Wei S C, Xie Y, Xing Y D, Wang L C, Ye H Q, Xiong X, Wang S, Han K. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422

    Article  CAS  Google Scholar 

  24. Zhang X K, Li H, Wang J, Peng D L, Liu J D, Zhang Y T. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. Journal of Membrane Science, 2019, 581: 321–330

    Article  CAS  Google Scholar 

  25. Peng Y, Yao R, Yang W S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification. Chemical Communications, 2019, 55: 3935

    Article  CAS  PubMed  Google Scholar 

  26. Liang F, Liu Q, Zhao J, Guan K C, Mao Y Y, Liu G P, Gu X H, Jin W Q. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2019, 66(2): e16812

    Google Scholar 

  27. Zhao D, Zhao J, Ji Y F, Liu G P, Liu S M, Jin W Q. Facilitated water-selective permeation via PEGylation of graphene oxide membrane. Journal of Membrane Science, 2018, 567: 311–320

    Article  CAS  Google Scholar 

  28. Huang K, Liu G P, Lou Y Y, Dong Z Y, Shen J, Jin W Q. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932

    Article  CAS  PubMed  Google Scholar 

  29. Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95

    Article  CAS  PubMed  Google Scholar 

  30. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23 (37): 4248–4253

    Article  CAS  PubMed  Google Scholar 

  31. Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005

    Article  CAS  PubMed  Google Scholar 

  32. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331

    Article  CAS  PubMed  Google Scholar 

  33. Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098

    Article  CAS  Google Scholar 

  34. Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4: 1716

    Article  PubMed  Google Scholar 

  35. Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano, 2019, 13 (8): 8491–8494

    Article  CAS  PubMed  Google Scholar 

  36. Hantanasirisakul K, Alhabeb M, Lipatov A, Maleski K, Anasori B, Salles P, Ieosakulrat C, Pakawatpanurut P, Sinitskii A, May S J, et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chemistry of Materials, 2019, 31(8): 2941–2951

    Article  CAS  Google Scholar 

  37. Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23(17): 2185–2192

    Article  CAS  Google Scholar 

  38. Hemanth N R, Balasubramanian K. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chemical Engineering Journal, 2019, 392: 123678

    Article  Google Scholar 

  39. Szuplewska A, Kulpinska D, Dybko A, Chudy M, Jastrzebska A M, Olszyna A, Brzozka Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in Biotechnology, 2020, 38(3): 264–279

    Article  CAS  PubMed  Google Scholar 

  40. Sinha A, Dhanjai, Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. MXene: an emerging material for sensing and biosensing. Trends in Analytical Chemistry, 2018, 105: 424–435

    Article  CAS  Google Scholar 

  41. Guo Z L, Zhou J, Zhu L G, Sun Z M. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11446–11452

    Article  CAS  Google Scholar 

  42. Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chemical Engineering Journal, 2020, 388: 124340

    Article  CAS  Google Scholar 

  43. Fu L J, Yan Z L, Zhao Q H, Yang H M. Novel 2D nanosheets with potential applications in heavy metal purification: a review. Advanced Materials Interfaces, 2018, 5(23): 1801094

    Article  Google Scholar 

  44. Huang X W, Wu P Y. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Advanced Functional Materials, 2020, 30(12): 1910048

    Article  CAS  Google Scholar 

  45. Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031

    Article  CAS  Google Scholar 

  46. Ding L, Wei Y Y, Wang Y J, Chen H B, Caro J, Wang H H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829

    Article  CAS  PubMed  Google Scholar 

  47. Ding L, Wei Y Y, Li L B, Zhang T, Wang H H, Xue J, Ding L X, Wang S Q, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li Z K, Liu Y C, Li L B, Wei Y Y, Caro J, Wang H H. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. Journal of Membrane Science, 2019, 592: 117361

    Article  Google Scholar 

  49. Shen J, Liu G Z, Ji Y F, Liu Q, Cheng L, Guan K C, Zhang M C, Liu G P, Xiong J, Yang J, et al. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28 (31): 1801511

    Article  Google Scholar 

  50. Feng X F, Yu Z X, Long R X, Sun Y X, Wang M, Li X H, Zeng G Y. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separation and Purification Technology, 2020, 247: 116945

    Article  CAS  Google Scholar 

  51. Saththasivam J, Wang K, Yiming W, Liu Z Y, Mahmoud K A. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Advances, 2016, 9(29): 16296–16304

    Article  Google Scholar 

  52. Zhang H J, Wang Z H, Shen Y Q, Mu P, Wang Q T, Li J. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. Journal of Colloid and Interface Science, 2020, 561: 861–869

    Article  CAS  PubMed  Google Scholar 

  53. Sun Y Q, Li S L, Zhuang Y X, Liu G Z, Xing W H, Jing W Q. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. Journal of Membrane Science, 2019, 591: 117350

    Article  CAS  Google Scholar 

  54. Wu X L, Cui X L, Wu W J, Wang J T, Li Y F, Jiang Z Y. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529

    Article  CAS  PubMed  Google Scholar 

  55. Ding L, Xiao D, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Oppositely charged Ti3C2Tx MXene membranes with 2D nano-fluidic channels for osmotic energy harvesting. Angewandte Chemie International Edition, 2020, 59(22): 8720–8726

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Li X, Van der Bruggen B. MXene based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304

    Article  CAS  Google Scholar 

  57. Lu Z, Wei Y Y, Deng J J, Ding L, Li Z K, Wang H H. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13 (9): 10535–10544

    Article  CAS  PubMed  Google Scholar 

  58. Xing Y D, Akonkwa G, Liu Z, Ye H Q, Han K. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3 (2): 1526–1534

    Article  CAS  Google Scholar 

  59. Pandey R P, Rasool K, Madhavan V E, Aïssa B, Gogotsi Y, Mahmoud K A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3522–3533

    Article  CAS  Google Scholar 

  60. Shamsabadi A A, Isfahani A P, Salestan S K, Rahimpour A, Ghalei B, Sivaniah E, Soroush M. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Applied Materials & Interfaces, 2020, 12(3): 3984–3992

    Article  CAS  Google Scholar 

  61. Hao L, Zhang H Q, Wu X L, Zhang J K, Wang J T, Li Y F. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149

    Article  CAS  Google Scholar 

  62. Xu Z, Sun Y Q, Zhuang Y X, Jing W H, Ye H, Cui Z F. Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564: 35–43

    Article  CAS  Google Scholar 

  63. Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558

    Article  CAS  Google Scholar 

  64. Hong S, Ming F W, Shi Y, Li R Y, Kim I S, Tang C Y, Alshareef H N, Wang P. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano, 2019, 13(8): 8917–8925

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Yang S, Zhang P P, Zhang J, Chen G B, Feng X L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nature Communications, 2019, 10(1): 2920

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lao J C, Lv R J, Gao J, Wang A X, Wu J S, Luo J Y. Aqueous stable Ti3C2 MXene membrane with fast and photo-switchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464–12471

    Article  CAS  PubMed  Google Scholar 

  67. Ding M M, Xu H, Chen W, Yang G, Kong Q, Ng D, Lin T, Xie Z L. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. Journal of Membrane Science, 2020, 600: 117871

    Article  Google Scholar 

  68. Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302

    Article  Google Scholar 

  69. Li L B, Zhang T, Duan Y F, Wei Y Y, Dong C J, Ding L, Qiao Z W, Wang H H. Selective gas diffusion in twodimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742

    Article  CAS  Google Scholar 

  70. Fan Y Y, Wei L Y, Meng X X, Zhang W M, Yang N T, Jin Y, Wang X B, Zhao M W, Liu S M. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123

    Article  CAS  Google Scholar 

  71. Jin Y, Fan Y Y, Meng X X, Zhang W M, Meng B, Yang N T, Liu S M. Theoretical and experimental insights into the mechanism for gas separation through nanochannels in 2D Laminar MXene membranes. Processes (Basel, Switzerland), 2019, 7(10): 751

    CAS  Google Scholar 

  72. Liu G Z, Cheng L, Chen G N, Liang F, Liu G P, Jin W Q. Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture. Chemistry, an Asian Journal, 2020, 15 (15): 2364–2070

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Ding L, Lu Z, Deng J J, Wei Y Y. Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 2019, 590: 117300

    Article  CAS  Google Scholar 

  74. Li S S, Dai J, Geng X, Li J D, Li P, Lei J D, Wang L Y, He J. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Separation and Purification Technology, 2020, 235: 116206

    Article  CAS  Google Scholar 

  75. Liu G Z, Shen J, Ji Y F, Liu Q, Liu G P, Yang J, Jin W Q. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 12095–12104

    Article  CAS  Google Scholar 

  76. Xu Z, Liu G Z, Ye H, Jin W Q, Cui Z F. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563: 625–632

    Article  CAS  Google Scholar 

  77. Liu G Z, Liu S, Ma K, Wang H Y, Wang X Y, Liu G P, Jin W Q. Polyelectrolyte functionalized Ti2CTx MXene membranes for pervaporation dehydration of isopropanol/water mixtures. Industrial & Engineering Chemistry Research, 2020, 59(10): 4732–4741

    Article  CAS  Google Scholar 

  78. Kang K M, Kim D W, Ren C E, Cho K M, Kim S J, Choi J H, Nam Y T, Gogotsi Y, Jung H T. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Applied Materials & Interfaces, 2017, 9(51): 44687–44694

    Article  CAS  Google Scholar 

  79. Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for highperformance lithiumsulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 5993–5998

    Article  CAS  Google Scholar 

  80. Zhang S Y, Liao S Y, Qi F Y, Liu R T, Xiao T H, Hu J Q, Li K X, Wang R B, Min Y G. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. Journal of Hazardous Materials, 2020, 384: 121367

    Article  CAS  PubMed  Google Scholar 

  81. Han R L, Ma X F, Xie Y L, Teng D, Zhang S H. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 2017, 7: 56204–56210

    Article  CAS  Google Scholar 

  82. Sun Y Q, Xu Z, Zhuang Y X, Liu G Z, Jin W Q, Liu G P, Jing W H. Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5(4): 045003

    Article  CAS  Google Scholar 

  83. Gao X, Li Z K, Xue J, Qian Y, Zhang L Z, Caro J, Wang H H. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. Journal of Membrane Science, 2019, 586: 162–169

    Article  CAS  Google Scholar 

  84. Wu X L, Hao L, Zhang J K, Zhang X, Wang J T, Liu J D. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188

    Article  CAS  Google Scholar 

  85. Han R L, Xie Y L, Ma X F. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chinese Journal of Chemical Engineering, 2019, 27(4): 877–883

    Article  CAS  Google Scholar 

  86. Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(41): 21663–21668

    Article  CAS  Google Scholar 

  87. Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730–4737

    Article  CAS  PubMed  Google Scholar 

  88. Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J S, Barsoum M W, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 2015, 7(3): 1795–1803

    Article  CAS  Google Scholar 

  90. Huang H B, Ying Y L, Peng X S. Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 13772–13782

    Article  CAS  Google Scholar 

  91. Putz K W, Compton O C, Segar C, An Z, Nguyen S T, Brinson L C. Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano, 2011, 5(8): 6601–6609

    Article  CAS  PubMed  Google Scholar 

  92. Dikin D A, Stankovich S, Zimney E J, Piner R D, Ruoff R S. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460

    Article  CAS  PubMed  Google Scholar 

  93. Han R Y, Wu P Y. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481

    Article  CAS  Google Scholar 

  94. Cao X P, Jing W H, Xing W H, Fan Y Q, Kong Y, Dong J H. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process. Chemical Communications, 2011, 47(12): 3457–3459

    Article  CAS  PubMed  Google Scholar 

  95. Zou D, Qiu M H, Chen X F, Fan Y Q. One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process. Journal of Membrane Science, 2017, 524: 141–150

    Article  CAS  Google Scholar 

  96. Xia C S, Xu Z, Yu J, Sun Y Q, Jing W H. Fabrication of microporous GO-TiO2 membrane via an improved weak alkaline solgel method. Journal of Membrane Science, 2018, 561: 10–18

    Article  CAS  Google Scholar 

  97. Yu J, Zhang Y, Chen J, Cui L L, Jing W H. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870

    Article  CAS  Google Scholar 

  98. Lee Y, Kim S J, Kim Y J, Lim Y, Chae Y, Lee B J, Kim Y T, Han H, Gogotsi Y, Ahn C W. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581

    Article  CAS  Google Scholar 

  99. Natu V, Hart J L, Sokol M, Chiang H, Taheri M L, Barsoum M W. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angewandte Chemie International Edition, 2019, 58(36): 12655–12660

    Article  CAS  PubMed  Google Scholar 

  100. Wang Z H, Li H B, Luo M L, Chen T H, Xia X F, Chen H L, Ma C Y, Guo J, He Z W, Song Y F, et al. MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Applied Nano Materials, 2020, 3(4): 3513–3522

    Article  CAS  Google Scholar 

  101. Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem, 2019, 5(1): 18–50

    Article  CAS  Google Scholar 

  102. Zhang W, Guo Z Y, Huang D Q, Liu Z M, Guo X, Zhong H Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32(33): 8555–8561

    Article  CAS  PubMed  Google Scholar 

  103. Chang Z Y, Deng J K, Chandrakumara G G, Yan W Y, Liu J Z. Two-dimensional shape memory graphene oxide. Nature Communications, 2016, 7(1): 11972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim S, Gupta M K, Lee K Y, Sohn A, Kim T Y, Shin K S, Kim D, Kim S K, Lee K H, Shin H J, et al. Transparent flexible graphene triboelectric nanogenerators. Advanced Materials, 2014, 26(23): 3918–3925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 21908054 and 21908098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Huang or Zhi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, K., Huang, K. & Xu, Z. Recent progress in the design and fabrication of MXene-based membranes. Front. Chem. Sci. Eng. 15, 820–836 (2021). https://doi.org/10.1007/s11705-020-1997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1997-7

Keywords

Navigation